Matrix
Time Limit: 3000MS   Memory Limit: 65536K
Total Submissions: 17224   Accepted: 6460

Description

Given an N*N matrix A, whose elements are either 0 or 1. A[i, j] means the number in the i-th row and j-th column. Initially we have A[i, j] = 0 (1 <= i, j <= N).

We can change the matrix in the following way. Given a rectangle whose upper-left corner is (x1, y1) and lower-right corner is (x2, y2), we change all the elements in the rectangle by using "not" operation (if it is a '0' then change it into '1' otherwise change it into '0'). To maintain the information of the matrix, you are asked to write a program to receive and execute two kinds of instructions.

1. C x1 y1 x2 y2 (1 <= x1 <= x2 <= n, 1 <= y1 <= y2 <= n) changes the matrix by using the rectangle whose upper-left corner is (x1, y1) and lower-right corner is (x2, y2). 
2. Q x y (1 <= x, y <= n) querys A[x, y]. 

Input

The first line of the input is an integer X (X <= 10) representing the number of test cases. The following X blocks each represents a test case.

The first line of each block contains two numbers N and T (2 <= N <= 1000, 1 <= T <= 50000) representing the size of the matrix and the number of the instructions. The following T lines each represents an instruction having the format "Q x y" or "C x1 y1 x2 y2", which has been described above.

Output

For each querying output one line, which has an integer representing A[x, y].

There is a blank line between every two continuous test cases.

Sample Input

1
2 10
C 2 1 2 2
Q 2 2
C 2 1 2 1
Q 1 1
C 1 1 2 1
C 1 2 1 2
C 1 1 2 2
Q 1 1
C 1 1 2 1
Q 2 1

Sample Output

1
0
0
1

很裸的题。

可以使用二维树状数组。

二维的写起来很方便,两重循环。

如果是要修改(x1,y1)  -  (x2,y2)的矩形区域。

那么可以在(x1,y1) 出加1,在(x2+1,y1)处加1,在(x1,y2+1)处加1,在(x2+1,y2+1)处加1 。。

画个图就知道了,查询单点就是求和。

 /* ***********************************************
Author :kuangbin
Created Time :2014/5/23 22:34:04
File Name :E:\2014ACM\专题学习\数据结构\二维树状数组\POJ2155.cpp
************************************************ */ #include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h>
using namespace std;
const int MAXN = ;
int lowbit(int x)
{
return x&(-x);
}
int c[MAXN][MAXN];
int n;
int sum(int x,int y)
{
int ret = ;
for(int i = x;i > ;i -= lowbit(i))
for(int j = y;j > ;j -= lowbit(j))
ret += c[i][j];
return ret;
}
void add(int x,int y,int val)
{
for(int i = x;i <= n;i += lowbit(i))
for(int j = y;j <= n;j += lowbit(j))
c[i][j] += val;
} int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
int T;
scanf("%d",&T);
while(T--)
{
int q;
scanf("%d%d",&n,&q);
memset(c,,sizeof(c));
char op[];
int x1,y1,x2,y2;
while(q--)
{
scanf("%s",op);
if(op[] == 'C')
{
scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
add(x1,y1,);
add(x2+,y1,);
add(x1,y2+,);
add(x2+,y2+,);
}
else
{
scanf("%d%d",&x1,&y1);
if(sum(x1,y1)% == )printf("0\n");
else printf("1\n");
}
}
if(T > )printf("\n");
}
return ;
}

POJ 2155 Matrix (二维树状数组)的更多相关文章

  1. POJ 2155 Matrix(二维树状数组,绝对具体)

    Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 20599   Accepted: 7673 Descripti ...

  2. poj 2155 Matrix (二维树状数组)

    题意:给你一个矩阵开始全是0,然后给你两种指令,第一种:C x1,y1,x2,y2 就是将左上角为x1,y1,右下角为x2,y2,的这个矩阵内的数字全部翻转,0变1,1变0 第二种:Q x1 y1,输 ...

  3. POJ 2155:Matrix 二维树状数组

    Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 21757   Accepted: 8141 Descripti ...

  4. [poj2155]Matrix(二维树状数组)

    Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 25004   Accepted: 9261 Descripti ...

  5. 【poj2155】Matrix(二维树状数组区间更新+单点查询)

    Description Given an N*N matrix A, whose elements are either 0 or 1. A[i, j] means the number in the ...

  6. POJ 2029 (二维树状数组)题解

    思路: 大力出奇迹,先用二维树状数组存,然后暴力枚举 算某个矩形区域的值的示意图如下,代码在下面慢慢找... 代码: #include<cstdio> #include<map> ...

  7. poj----2155 Matrix(二维树状数组第二类)

    Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 16950   Accepted: 6369 Descripti ...

  8. poj 2155 B - Matrix 二维树状数组

    #include<iostream> #include<string> #include<string.h> #include<cstdio> usin ...

  9. POJ2155:Matrix(二维树状数组,经典)

    Description Given an N*N matrix A, whose elements are either 0 or 1. A[i, j] means the number in the ...

  10. Matrix 二维树状数组的第二类应用

    Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 17976   Accepted: 6737 Descripti ...

随机推荐

  1. Android项目的目录结构

    assets  资产目录,  存放一个文件的 这个文件会被打包到应用程序的apk(安装包 ) bin 编译后的文件目录 gen 自动生成文件的目录 roject.properties 代表编译的版本  ...

  2. jQuery 获取父窗口的元素 父窗口 子窗口(iframe)

    $("#父窗口元素ID",window.parent.document); 对应javascript版本为window.parent.document.getElementById ...

  3. Unity3D研究院之获取摄像机的视口区域

    摄像机分为两种,一种是正交摄像机还有一种是透视摄像机.正交摄像机无论远近它的视口范围永远是固定的,但是透视摄像机是由原点向外扩散性发射,也就是距离越远它的视口区域也就越大.那么我们如何获取距离摄像机任 ...

  4. nginx配置rewrite

    1. uri  和 url读取区别 区别就是URI定义资源,而URL不单定义这个资源,还定义了如何找到这个资源. 比如说,一个服务器上,到一个文件夹/网页的绝对地址(absolute path)就是U ...

  5. log4net.config

    <?xml version="1.0" encoding="UTF-8"?> <log4net> <root> <le ...

  6. Emmet 真是个好东西

    他的官网:http://docs.emmet.io/ 给广大程序员节省时间 #page>div.logo+ul#navigation>li*5>a{Item $}生产 <div ...

  7. SQL总结(二)连表查询

    ---恢复内容开始--- SQL总结(二)连表查询 连接查询包括合并.内连接.外连接和交叉连接,如果涉及多表查询,了解这些连接的特点很重要. 只有真正了解它们之间的区别,才能正确使用. 1.Union ...

  8. url中参数以及callback后面的串

    最近在写一个京东的爬虫,在模拟其http请求访问评论时,遇到http://club.jd.com/productpage/p-1419543-s-0-t-0-p-0.html?callback=jQu ...

  9. Nuget 管理entity framework

    安装,带版本号 PM> Install-Package EntityFramework -Version 5.0.0 更新数据库 PM> Enable-Migrations -Contex ...

  10. Linux 下三种方式设置环境变量

    1.在Windows 系统下,很多软件安装都需要配置环境变量,比如 安装 jdk ,如果不配置环境变量,在非软件安装的目录下运行javac 命令,将会报告找不到文件,类似的错误. 2.那么什么是环境变 ...