D Tree

Problem Description
 
There is a skyscraping tree standing on the playground of Nanjing University of Science and Technology. On each branch of the tree is an integer (The tree can be treated as a connected graph with N vertices, while each branch can be treated as a vertex). Today the students under the tree are considering a problem: Can we find such a chain on the tree so that the multiplication of all integers on the chain (mod 106 + 3) equals to K?
Can you help them in solving this problem?
 
Input
 
There are several test cases, please process till EOF.
Each test case starts with a line containing two integers N(1 <= N <= 105) and K(0 <=K < 106 + 3). The following line contains n numbers vi(1 <= vi < 106 + 3), where vi indicates the integer on vertex i. Then follows N - 1 lines. Each line contains two integers x and y, representing an undirected edge between vertex x and vertex y.
 
Output
 
For each test case, print a single line containing two integers a and b (where a < b), representing the two endpoints of the chain. If multiply solutions exist, please print the lexicographically smallest one. In case no solution exists, print “No solution”(without quotes) instead.
For more information, please refer to the Sample Output below.
 
Sample Input
 
5 60
2 5 2 3 3
1 2
1 3
2 4
2 5
5 2
2 5 2 3 3
1 2
1 3
2 4
2 5
 
Sample Output
 
3 4
No solution
 
Hint

1. “please print the lexicographically smallest one.”是指: 先按照第一个数字的大小进行比较,若第一个数字大小相同,则按照第二个数字大小进行比较,依次类推。

2. 若出现栈溢出,推荐使用C++语言提交,并通过以下方式扩栈:
#pragma comment(linker,"/STACK:102400000,102400000")

 

题意:

  给你一棵树n个点,一个K

  让你找到一条 a->b 的字典数最小的 路径满足 这条路径 上点权 乘积取mod下 等于K

题解:

  预处理小于mod的 所有逆元

  树分治 即可

#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<vector>
#include<map>
using namespace std; #pragma comment(linker, "/STACK:102400000,102400000")
#define ls i<<1
#define rs ls | 1
#define mid ((ll+rr)>>1)
#define pii pair<int,int>
#define MP make_pair typedef long long LL;
const long long INF = 1e18;
const double Pi = acos(-1.0);
const int N = 1e5+, M = 1e6+, inf = 2e9, mod = ; int head[N],vis[N],f[N],siz[N],id[N],n,t = ,ansl,ansr,allnode,root; struct edge{int to,next;}e[N * ];
LL mp[M],inv[M],v[M],K,deep[M];
void add(int u,int v) {e[t].next=head[u];e[t].to=v;head[u]=t++;} void getroot(int u,int fa) {
f[u] = ;
siz[u] = ;
for(int i = head[u]; i; i = e[i].next) {
int to = e[i].to;
if(vis[to] || to == fa) continue;
getroot(to,u);
siz[u] += siz[to];
f[u] = max(f[u],siz[to]);
}
f[u] = max(f[u], allnode - siz[u]);
if(f[u] < f[root]) root = u;
}
void getdeep(int u,int fa,LL now) {
deep[++deep[]] = now*v[u]%mod;
id[deep[]] = u;
for(int i = head[u]; i; i = e[i].next) {
int to = e[i].to;
if(vis[to] || to == fa) continue;
getdeep(to,u,now*v[u]%mod);
}
}
void update(int u,int x,int y) {
int tmp = mp[inv[x*v[u]%mod]*K%mod];
if(!tmp) return ;
if(y > tmp) swap(y,tmp);
if(y < ansl || (y == ansl && tmp < ansr)) ansl = y, ansr = tmp;
} void work(int u){
vis[u] = ;
mp[] = u;
for(int i = head[u]; i; i = e[i].next) {
int to = e[i].to;
if(vis[to]) continue;
deep[] = ;
getdeep(to,u,);
for(int j = ; j <= deep[]; ++j) update(u,deep[j],id[j]);
for(int j = ; j <= deep[]; ++j) if(!mp[deep[j]] || mp[deep[j]] > id[j])mp[deep[j]] = id[j];
}
mp[] = ;
for(int i = head[u]; i; i = e[i].next) {
int to = e[i].to;
if(vis[to]) continue;
deep[] = ;
getdeep(to,u,);
for(int j = ; j <= deep[]; ++j) mp[deep[j]] = ;
}
for(int i = head[u]; i; i = e[i].next) {
int to = e[i].to;
if(vis[to]) continue;
root = ;
allnode = siz[to];
getroot(e[i].to,root);
work(root);
}
}
int main() {
inv[]=;
for(int i=;i<mod;i++){int a=mod/i,b=mod%i;inv[i]=(inv[b]*(-a)%mod+mod)%mod;}
while(~scanf("%d%I64d",&n,&K)) {
t = ;memset(head,,sizeof(head));
memset(vis,,sizeof(vis));
ansl = ansr = inf;
for(int i = ; i <= n; ++i) scanf("%I64d",&v[i]);
for(int i = ; i < n; ++i) {
int u,v;
scanf("%d%d",&u,&v);
add(u,v);
add(v,u);
}
f[]=inf;
allnode=n;root=;
getroot(,);
work(root);
if(ansl == inf) puts("No solution");else
printf("%d %d\n",ansl,ansr);
}
return ;
}

HDU 4812 D Tree 树分治+逆元处理的更多相关文章

  1. HDU 4812 D Tree 树分治

    题意: 给出一棵树,每个节点上有个权值.要找到一对字典序最小的点对\((u, v)(u < v)\),使得路径\(u \to v\)上所有节点权值的乘积模\(10^6 + 3\)的值为\(k\) ...

  2. hdu 4812 D Tree(树的点分治)

    D Tree Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 102400/102400 K (Java/Others) Total ...

  3. HDU - 4812 D Tree 点分治

    http://acm.hdu.edu.cn/showproblem.php?pid=4812 题意:有一棵树,每个点有一个权值要求找最小的一对点,路径上的乘积mod1e6+3为k 题解:点分治,挨个把 ...

  4. HDU 4812 D Tree 树分区+逆+hash新位置

    意甲冠军: 特定n点树 K 以下n号码是正确的点 以下n-1行给出了树的侧. 问: 所以,如果有在正确的道路点图的路径 % mod  = K 如果输出路径的两端存在. 多条路径则输出字典序最小的一条. ...

  5. HDU 4812 D Tree

    HDU 4812 思路: 点分治 先预处理好1e6 + 3以内到逆元 然后用map 映射以分治点为起点的链的值a 成他的下标 u 然后暴力跑出以分治点儿子为起点的链的值b,然后在map里查找inv[b ...

  6. 【BZOJ-1468】Tree 树分治

    1468: Tree Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1025  Solved: 534[Submit][Status][Discuss] ...

  7. POJ 1741 Tree 树分治

    Tree     Description Give a tree with n vertices,each edge has a length(positive integer less than 1 ...

  8. POJ 1741.Tree 树分治 树形dp 树上点对

    Tree Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 24258   Accepted: 8062 Description ...

  9. poj 1744 tree 树分治

    Tree Time Limit: 1000MS   Memory Limit: 30000K       Description Give a tree with n vertices,each ed ...

随机推荐

  1. jenkins集成ansible注意事项Failed to connect to the host via ssh.

    在集成jenkins和ansible实现自动化部署时,root用户下执行ansible命令时可以正常运行.由于是通过jenkins用户去执行ansible命令,而jenkins用户却报如下异常: XX ...

  2. MFC 对话框添加菜单

    1.在Resource View 里右击菜单里选择Add Resource,选择menu,添加一个IDR_MENU1的菜单.在编辑器编辑菜单,添加菜单项,命名各个菜单项的ID. 2.在所要添加菜单的对 ...

  3. Selenium WebDriver 处理cookie

    在使用webdriver测试中,很多地方都使用登陆,cookie能够实现不必再次输入用户名密码进行登陆. 首先了解一下Java Cookie类的一些方法. 在jsp中处理cookie数据的常用方法: ...

  4. stream的seek方法实例

    using (FileStream outStream = new FileStream(@"D:\12.txt", FileMode.Open)) { using (FileSt ...

  5. 【python】类中的self

    在python的类中,经常会写self,代表对象自己.如下例: #coding=utf-8 class Foo: def __init__(self, name): self.name = name ...

  6. yii压缩

    application\components\controller.php protected function afterRender($view, &$output) { if(Yii:: ...

  7. Oracle数据库对象题库

    一.    填空题 在用 create 语句创建基本表时,最初只是一个空的框架,用户可以使用insert命令把数据插入表中. 在基本表不需要时,可以使用 drop table 语句撤消.在一个基本表撤 ...

  8. C++静态代码分析PreFast

    1历史 Prefast是微软研究院提出的静态代码分析工具.主要目的是通过分析代码的数据和控制信息来检测程序中的缺陷.需要强调的是,Prefast检测的缺项不仅仅是安全缺陷,但是安全缺陷类型是其检测的最 ...

  9. 单击双击手势(UITapGestureRecognizer)

    - (void)viewDidLoad { [super viewDidLoad]; // Do any additional setup after loading the view, typica ...

  10. September 10th 2016 Week 37th Saturday

    An innovation that goes beyond imagination again raised the standard. 颠覆想象的创新,再一次刷新标准. An advertisem ...