D Tree

Problem Description
 
There is a skyscraping tree standing on the playground of Nanjing University of Science and Technology. On each branch of the tree is an integer (The tree can be treated as a connected graph with N vertices, while each branch can be treated as a vertex). Today the students under the tree are considering a problem: Can we find such a chain on the tree so that the multiplication of all integers on the chain (mod 106 + 3) equals to K?
Can you help them in solving this problem?
 
Input
 
There are several test cases, please process till EOF.
Each test case starts with a line containing two integers N(1 <= N <= 105) and K(0 <=K < 106 + 3). The following line contains n numbers vi(1 <= vi < 106 + 3), where vi indicates the integer on vertex i. Then follows N - 1 lines. Each line contains two integers x and y, representing an undirected edge between vertex x and vertex y.
 
Output
 
For each test case, print a single line containing two integers a and b (where a < b), representing the two endpoints of the chain. If multiply solutions exist, please print the lexicographically smallest one. In case no solution exists, print “No solution”(without quotes) instead.
For more information, please refer to the Sample Output below.
 
Sample Input
 
5 60
2 5 2 3 3
1 2
1 3
2 4
2 5
5 2
2 5 2 3 3
1 2
1 3
2 4
2 5
 
Sample Output
 
3 4
No solution
 
Hint

1. “please print the lexicographically smallest one.”是指: 先按照第一个数字的大小进行比较,若第一个数字大小相同,则按照第二个数字大小进行比较,依次类推。

2. 若出现栈溢出,推荐使用C++语言提交,并通过以下方式扩栈:
#pragma comment(linker,"/STACK:102400000,102400000")

 

题意:

  给你一棵树n个点,一个K

  让你找到一条 a->b 的字典数最小的 路径满足 这条路径 上点权 乘积取mod下 等于K

题解:

  预处理小于mod的 所有逆元

  树分治 即可

#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<vector>
#include<map>
using namespace std; #pragma comment(linker, "/STACK:102400000,102400000")
#define ls i<<1
#define rs ls | 1
#define mid ((ll+rr)>>1)
#define pii pair<int,int>
#define MP make_pair typedef long long LL;
const long long INF = 1e18;
const double Pi = acos(-1.0);
const int N = 1e5+, M = 1e6+, inf = 2e9, mod = ; int head[N],vis[N],f[N],siz[N],id[N],n,t = ,ansl,ansr,allnode,root; struct edge{int to,next;}e[N * ];
LL mp[M],inv[M],v[M],K,deep[M];
void add(int u,int v) {e[t].next=head[u];e[t].to=v;head[u]=t++;} void getroot(int u,int fa) {
f[u] = ;
siz[u] = ;
for(int i = head[u]; i; i = e[i].next) {
int to = e[i].to;
if(vis[to] || to == fa) continue;
getroot(to,u);
siz[u] += siz[to];
f[u] = max(f[u],siz[to]);
}
f[u] = max(f[u], allnode - siz[u]);
if(f[u] < f[root]) root = u;
}
void getdeep(int u,int fa,LL now) {
deep[++deep[]] = now*v[u]%mod;
id[deep[]] = u;
for(int i = head[u]; i; i = e[i].next) {
int to = e[i].to;
if(vis[to] || to == fa) continue;
getdeep(to,u,now*v[u]%mod);
}
}
void update(int u,int x,int y) {
int tmp = mp[inv[x*v[u]%mod]*K%mod];
if(!tmp) return ;
if(y > tmp) swap(y,tmp);
if(y < ansl || (y == ansl && tmp < ansr)) ansl = y, ansr = tmp;
} void work(int u){
vis[u] = ;
mp[] = u;
for(int i = head[u]; i; i = e[i].next) {
int to = e[i].to;
if(vis[to]) continue;
deep[] = ;
getdeep(to,u,);
for(int j = ; j <= deep[]; ++j) update(u,deep[j],id[j]);
for(int j = ; j <= deep[]; ++j) if(!mp[deep[j]] || mp[deep[j]] > id[j])mp[deep[j]] = id[j];
}
mp[] = ;
for(int i = head[u]; i; i = e[i].next) {
int to = e[i].to;
if(vis[to]) continue;
deep[] = ;
getdeep(to,u,);
for(int j = ; j <= deep[]; ++j) mp[deep[j]] = ;
}
for(int i = head[u]; i; i = e[i].next) {
int to = e[i].to;
if(vis[to]) continue;
root = ;
allnode = siz[to];
getroot(e[i].to,root);
work(root);
}
}
int main() {
inv[]=;
for(int i=;i<mod;i++){int a=mod/i,b=mod%i;inv[i]=(inv[b]*(-a)%mod+mod)%mod;}
while(~scanf("%d%I64d",&n,&K)) {
t = ;memset(head,,sizeof(head));
memset(vis,,sizeof(vis));
ansl = ansr = inf;
for(int i = ; i <= n; ++i) scanf("%I64d",&v[i]);
for(int i = ; i < n; ++i) {
int u,v;
scanf("%d%d",&u,&v);
add(u,v);
add(v,u);
}
f[]=inf;
allnode=n;root=;
getroot(,);
work(root);
if(ansl == inf) puts("No solution");else
printf("%d %d\n",ansl,ansr);
}
return ;
}

HDU 4812 D Tree 树分治+逆元处理的更多相关文章

  1. HDU 4812 D Tree 树分治

    题意: 给出一棵树,每个节点上有个权值.要找到一对字典序最小的点对\((u, v)(u < v)\),使得路径\(u \to v\)上所有节点权值的乘积模\(10^6 + 3\)的值为\(k\) ...

  2. hdu 4812 D Tree(树的点分治)

    D Tree Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 102400/102400 K (Java/Others) Total ...

  3. HDU - 4812 D Tree 点分治

    http://acm.hdu.edu.cn/showproblem.php?pid=4812 题意:有一棵树,每个点有一个权值要求找最小的一对点,路径上的乘积mod1e6+3为k 题解:点分治,挨个把 ...

  4. HDU 4812 D Tree 树分区+逆+hash新位置

    意甲冠军: 特定n点树 K 以下n号码是正确的点 以下n-1行给出了树的侧. 问: 所以,如果有在正确的道路点图的路径 % mod  = K 如果输出路径的两端存在. 多条路径则输出字典序最小的一条. ...

  5. HDU 4812 D Tree

    HDU 4812 思路: 点分治 先预处理好1e6 + 3以内到逆元 然后用map 映射以分治点为起点的链的值a 成他的下标 u 然后暴力跑出以分治点儿子为起点的链的值b,然后在map里查找inv[b ...

  6. 【BZOJ-1468】Tree 树分治

    1468: Tree Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1025  Solved: 534[Submit][Status][Discuss] ...

  7. POJ 1741 Tree 树分治

    Tree     Description Give a tree with n vertices,each edge has a length(positive integer less than 1 ...

  8. POJ 1741.Tree 树分治 树形dp 树上点对

    Tree Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 24258   Accepted: 8062 Description ...

  9. poj 1744 tree 树分治

    Tree Time Limit: 1000MS   Memory Limit: 30000K       Description Give a tree with n vertices,each ed ...

随机推荐

  1. ASM:《X86汇编语言-从实模式到保护模式》5-7章:汇编基础

    第5-7章感觉是这一本书中比较奇怪的章节,可能是作者考虑到读者人群水平的差异,故意由浅入深地讲如何在屏幕上显示字符和使用mov,jmp指令等等,但是这样讲的东西有点重复,而且看了第六,第七章以后,感觉 ...

  2. BestCoder27 1002.Taking Bus(hdu 5163) 解题报告

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5163 题目意思:有 n 个车站,给出相邻两个车站的距离,即车站 i 和车站 i+1 的距离为 di ( ...

  3. 51 NOD 1384 全排列(STL 搜索)

    1384 全排列       基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题        收藏        关注   给出一个字符串S(可能又重复的字符),按照字典序 ...

  4. cmd导入oracle数据

    ctrl+r 输入imp

  5. va_list使用

    http://www.programfan.com/blog/article.asp?id=41937

  6. .NET微信公众号开发-1.0初始微信公众号

    一.前言 微信公众号是开发者或商家在微信公众平台上申请的应用账号,该帐号与QQ账号互通,通过公众号,商家可在微信平台上实现和特定群体的文字.图片.语音.视频的全方位沟通.互动 .形成了一 种主流的线上 ...

  7. Jquery的普通事件和on的委托事件

    以click的事件为例: 普通的绑定事件:$('.btn').click(function(){})绑定 on绑定事件:$(documnet).on('click','btn2',function() ...

  8. Mysql undo与redo Log

    http://mysql.taobao.org/monthly/2015/04/01/ http://www.cnblogs.com/Bozh/archive/2013/03/18/2966494.h ...

  9. Swift - as、as!、as?三种类型转换操作使用一览

    as.as!.as? 这三种类型转换操作符的异同,以及各自的使用场景.   1,as使用场合 (1)从派生类转换为基类,向上转型(upcasts) 1 2 3 4 class Animal {} cl ...

  10. monkey测试

    一.理解monkey测试 1.Monkey测试是Android自动化测试的一种手段.Monkey测试本身非常简单,就是模拟用户的按键输入,触摸屏输入,手势输入等,看设备多长时间会出异常. 2.当Mon ...