Minimum Adjustment Cost
Given an integer array, adjust each integers so that the difference of every adjacent integers are not greater than a given number target.
If the array before adjustment is A, the array after adjustment is B, you should minimize the sum of |A[i]-B[i]|
Note: You can assume each number in the array is a positive integer and not greater than 100.
Example
Given A = [1,4,2,3] and target = 1, one of the solutions is [2,3,2,3], the adjustment cost is 2 and it's minimal.
Return 2.
分析:
首先,对于数组里的每个数,它最终的值不可能大于这个数组里最大的数(max)。所以,每个数的范围只能是从1到max. 如果第i个数取的值是j, 那么对于第i - 1个数,它能取的范围是不是只能是Math.max(1, j - target) 到 Math.min(j + target, max)。
如果用cost[i][j] 表示第i个数取p那个值时从第0个数到第i个数的total cost, 那么 cost[i][j] = Math.min(Math.abs(j - A.get(i)) + costs[i - 1][k]), Math.max(1, j - target) <= k <= Math.min(j + target, max) and j - A.get(i))
备注:最好自己创建一个二维costs表,自己安照下面的代码走一遍就明白了。
public class Solution {
/**
* cnblogs.com/beiyeqingteng/
*/
public int MinAdjustmentCost(ArrayList<Integer> A, int target) {
if (A == null || A.size() == ) return ;
int max = getMax(A);
int[][] costs = new int[A.size()][max + ];
for (int i = ; i < costs.length; i++) {
for (int j = ; j <= max; j++) {
costs[i][j] = Integer.MAX_VALUE;
if (i == ) {
// for the first number in the array, we assume it ranges from 1 to max;
costs[i][j] = Math.abs(j - A.get(i));
} else {
// for the number A.get(i), if we change it to j, then the minimum total cost
// is decided by Math.abs(j - A.get(i)) + costs[i - 1][k], and the range of
// k is from Math.max(1, j - target) to Math.min(j + target, max)
for (int k = Math.max(, j - target); k <= Math.min(j + target, max); k++) {
costs[i][j] = Math.min(costs[i][j], Math.abs(j - A.get(i)) + costs[i - ][k]);
}
}
}
}
int min = Integer.MAX_VALUE;
for (int i = ; i < costs[].length; i++) {
min = Math.min(min, costs[costs.length - ][i]);
}
return min;
}
private int getMax(ArrayList<Integer> A) {
int max = A.get();
for (int i = ; i < A.size(); i++) {
max = Math.max(max, A.get(i));
}
return max;
}
}
转载请注明出处: cnblogs.com/beiyeqingteng/
Minimum Adjustment Cost的更多相关文章
- Lintcode: Minimum Adjustment Cost
Given an integer array, adjust each integers so that the difference of every adjcent integers are no ...
- HDU 1385 Minimum Transport Cost (Dijstra 最短路)
Minimum Transport Cost http://acm.hdu.edu.cn/showproblem.php?pid=1385 Problem Description These are ...
- Minimum Transport Cost(floyd+二维数组记录路径)
Minimum Transport Cost Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/O ...
- HDU1385 Minimum Transport Cost (Floyd)
Minimum Transport Cost Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/O ...
- hdu 1385 Minimum Transport Cost(floyd && 记录路径)
Minimum Transport Cost Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/O ...
- hdu 1385 Minimum Transport Cost (Floyd)
Minimum Transport CostTime Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Ot ...
- NSOJ Minimum Transport Cost
These are N cities in Spring country. Between each pair of cities there may be one transportation tr ...
- ZOJ 1456 Minimum Transport Cost(Floyd算法求解最短路径并输出最小字典序路径)
题目链接: https://vjudge.net/problem/ZOJ-1456 These are N cities in Spring country. Between each pair of ...
- Minimum Transport Cost Floyd 输出最短路
These are N cities in Spring country. Between each pair of cities there may be one transportation tr ...
随机推荐
- osharp3使用经验:整合DbContextScope 文章 1
osharp3的事务处理是跳过savechangeing方法来控制的,没有DbContextScope专业 DbContextScope管理dbcontext的优劣本文不讨论 整合过程: 1.在.Da ...
- jQuery/js 正则收集(邮件验证、)
var reg = /^\w+((-\w+)|(\.\w+))*\@[A-Za-z0-9]+((\.|-)[A-Za-z0-9]+)*\.[A-Za-z0-9]+$/; //验证邮箱的正则表达式if( ...
- Effective Objective-C 2.0 — 第二章 对象、消息、运行期 - 第六条:理解“属性”这一概念
开发者通过对象来 存储并传递数据. 在对象之间传递数据并执行任务的过程就叫做“消息传递”. 这两条特性的工作原理? Objective-C运行期环境(Objective-C runtime) ,提供了 ...
- Ajax异步刷新地址栏
公司项目后台使用现成的UI框架,DevExpress,jqGrid,XXXUI之类的,这些展示数据列表的控件/插件,基本是异步的. 这倒也好,有变化也只是数据那一块变化,不会重新加载整个页面. 但是, ...
- mysql主从复制(超简单)
mysql主从复制(超简单) 怎么安装mysql数据库,这里不说了,只说它的主从复制,步骤如下: 1.主从服务器分别作以下操作: 1.1.版本一致 1.2.初始化表,并在后台启动mysql ...
- ExtJS请求验证方法
//登录连接数据库验证 function loginCheck() { var UserName = Ext.getCmp("UserName").getValue(); var ...
- Apache中,同一IP使用多域名对应多个网站的方法
首先dns中确定有相应的A记录, abc IN A 211.154.2.5 mail IN A 211.154.2.5 这个讲的是在windows下面配置apache虚拟主机: 一.配置虚拟 ...
- spring缓存Ehcache(入门2)
使用Ehcache缓存工具类. 一.由于使用了maven,所以需要引入依赖包: <dependency> <groupId>net.sf.ehcache</groupId ...
- Linux文件处理命令
1.权限处理 1.1 方法一 使用+-=的方法 1.1.1权限 rwx r 读 w 写 x 执行 1.1.2用户 ugoa u 所有者 g 用户组 o 其他人 a 表示以上所有 修改文件的方法 例: ...
- Android 软键盘盖住输入框的问题
当在Android的layout设计里面如果输入框过多,则在输入弹出软键盘的时候,下面的输入框会有一部分被软件盘挡住,从而不能获取焦点输入. 解决办法: 方法一:在你的activity中的oncrea ...