44.Prim算法
public static void main(String[] args) {
//测试看看图是否创建ok
char[] data = new char[]{'A','B','C','D','E','F','G'};
int verxs = data.length;
//邻接矩阵的关系使用二维数组表示,10000这个大数,表示两个点不联通
int [][]weight=new int[][]{
{10000,5,7,10000,10000,10000,2},
{5,10000,10000,9,10000,10000,3},
{7,10000,10000,10000,8,10000,10000},
{10000,9,10000,10000,10000,4,10000},
{10000,10000,8,10000,10000,5,4},
{10000,10000,10000,4,5,10000,6},
{2,3,10000,10000,4,6,10000},};
//创建MGraph对象
MGraph graph = new MGraph(verxs);
//创建一个MinTree对象
MinTree minTree = new MinTree();
minTree.createGraph(graph, verxs, data, weight);
//输出
minTree.showGraph(graph);
//测试普利姆算法
minTree.prim(graph, 1);//
}
}
//创建最小生成树->村庄的图
class MinTree {
//创建图的邻接矩阵
/**
*
* @param graph 图对象
* @param verxs 图对应的顶点个数
* @param data 图的各个顶点的值
* @param weight 图的邻接矩阵
*/
public void createGraph(MGraph graph, int verxs, char data[], int[][] weight) {
int i, j;
for(i = 0; i < verxs; i++) {//顶点
graph.data[i] = data[i];
for(j = 0; j < verxs; j++) {
graph.weight[i][j] = weight[i][j];
}
}
}
//显示图的邻接矩阵
public void showGraph(MGraph graph) {
for(int[] link: graph.weight) {
System.out.println(Arrays.toString(link));
}
}
//编写prim算法,得到最小生成树
/**
*
* @param graph 图
* @param v 表示从图的第几个顶点开始生成'A'->0 'B'->1...
*/
public void prim(MGraph graph, int v) {
//visited[] 标记结点(顶点)是否被访问过
int visited[] = new int[graph.verxs];
//visited[] 默认元素的值都是0, 表示没有访问过
// for(int i =0; i <graph.verxs; i++) {
// visited[i] = 0;
// }
//把当前这个结点标记为已访问
visited[v] = 1;
//h1 和 h2 记录两个顶点的下标
int h1 = -1;
int h2 = -1;
int minWeight = 10000; //将 minWeight 初始成一个大数,后面在遍历过程中,会被替换
for(int k = 1; k < graph.verxs; k++) {//因为有 graph.verxs顶点,普利姆算法结束后,有 graph.verxs-1边
//这个是确定每一次生成的子图 ,和哪个结点的距离最近
for(int i = 0; i < graph.verxs; i++) {// i结点表示被访问过的结点
for(int j = 0; j< graph.verxs;j++) {//j结点表示还没有访问过的结点
if(visited[i] == 1 && visited[j] == 0 && graph.weight[i][j] < minWeight) {
//替换minWeight(寻找已经访问过的结点和未访问过的结点间的权值最小的边)
minWeight = graph.weight[i][j];
h1 = i;
h2 = j;
}
}
}
//找到一条边是最小
System.out.println("边<" + graph.data[h1] + "," + graph.data[h2] + "> 权值:" + minWeight);
//将当前这个结点标记为已经访问
visited[h2] = 1;
//minWeight 重新设置为最大值 10000
minWeight = 10000;
}
}
}
class MGraph {
int verxs; //表示图的节点个数
char[] data;//存放结点数据
int[][] weight; //存放边,就是我们的邻接矩阵
public MGraph(int verxs) {
this.verxs = verxs;
data = new char[verxs];
weight = new int[verxs][verxs];
}
}
44.Prim算法的更多相关文章
- 经典算法题每日演练——第十四题 Prim算法
原文:经典算法题每日演练--第十四题 Prim算法 图论在数据结构中是非常有趣而复杂的,作为web码农的我,在实际开发中一直没有找到它的使用场景,不像树那样的频繁使用,不过还是准备 仔细的把图论全部过 ...
- 最小生成树问题------------Prim算法(TjuOj_1924_Jungle Roads)
遇到一道题,简单说就是找一个图的最小生成树,大概有两种常用的算法:Prim算法和Kruskal算法.这里先介绍Prim.随后贴出1924的算法实现代码. Prim算法 1.概览 普里姆算法(Prim算 ...
- Jungle Roads_hdu_1301(prim算法)
Jungle Roads Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Tot ...
- 图解最小生成树 - 普里姆(Prim)算法
我们在图的定义中说过,带有权值的图就是网结构.一个连通图的生成树是一个极小的连通子图,它含有图中全部的顶点,但只有足以构成一棵树的n-1条边.所谓的最小成本,就是n个顶点,用n-1条边把一个连通图连接 ...
- 图的生成树(森林)(克鲁斯卡尔Kruskal算法和普里姆Prim算法)、以及并查集的使用
图的连通性问题:无向图的连通分量和生成树,所有顶点均由边连接在一起,但不存在回路的图. 设图 G=(V, E) 是个连通图,当从图任一顶点出发遍历图G 时,将边集 E(G) 分成两个集合 T(G) 和 ...
- 最小生成树のprim算法
Problem A Time Limit : 1000/1000ms (Java/Other) Memory Limit : 32768/32768K (Java/Other) Total Sub ...
- 数据结构代码整理(线性表,栈,队列,串,二叉树,图的建立和遍历stl,最小生成树prim算法)。。持续更新中。。。
//归并排序递归方法实现 #include <iostream> #include <cstdio> using namespace std; #define maxn 100 ...
- 最小生成树——prim算法
prim算法是选取任意一个顶点作为树的一个节点,然后贪心的选取离这棵树最近的点,直到连上所有的点并且不够成环,它的时间复杂度为o(v^2) #include<iostream>#inclu ...
- 洛谷 P3366 【模板】最小生成树 prim算法思路 我自己的实现
网上有很多prim算法 用邻接矩阵 加什么lowcost数组 我觉得不靠谱 毕竟邻接矩阵本身就不是存图的好方法 所以自己写了一个邻接表(边信息表)版本的 注意我还是用了优先队列 每次新加入一个点 ...
随机推荐
- 使用PostMan测试WebService接口教程
一.操作步骤 1.设置URL 2.设置请求模式:Post 3.设置Header:添加 Content-Type ,值为 text/xml;charset=utf-8 4.设置Body:勾选raw 5. ...
- springboot发送邮件(含附件)
引入maven <dependency> <groupId>org.springframework.boot</groupId> <artifactId> ...
- summernote富文本图片上传,增加视频上传功能、批量上传方法
Summernote 是一个简单灵活的所见即所得的 HTML 在线编辑器,基于 jQuery 和 Bootstrap 构建,支持快捷键操作,提供大量可定制的选项. 但是却只有图片上传功能,没有视频上传 ...
- 【LeetCode】1403. 非递增顺序的最小子序列 Minimum Subsequence in Non-Increasing Order
作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 贪心 日期 题目地址:https://leetcode ...
- 【经验】基于阿里云 Ubuntu 的 LAMP 网站搭建及配置完全教程
本文同步发表在负雪明烛的博客:https://fuxuemingzhu.cn/2016/03/02/My-Aliyun-Server-Setting/ 起因 最近老师让我做一个众筹系统,可以在微信公众 ...
- Codeforces 1076G Array Game 题解
目录 题目大意 做法 代码 不想写昨天晚上cf的比赛题目所以来写题解摸摸鱼 题目大意 有一个在长度为\(k\)的正整数序列\(b\)上进行的游戏,一开始一个棋子放在位置\(1\),假如当前棋子的位置为 ...
- Bayesian Optimization with a Finite Budget: An Approximate Dynamic Programming Approach
目录 概 主要内容 Lam R, Willcox K, Wolpert D H, et al. Bayesian Optimization with a Finite Budget: An Appro ...
- TYPEC转HDMI+PD+USB3.0拓展坞三合一优化方案|CS5266 dmeoboard原理图
CS5266 Capstone 是Type-C转HDMI带PD3.0快充的音视频转换芯片. CS5266接收器端口将信道配置(CC)控制器.电源传输(PD)控制器.Billboard控制器和displ ...
- win下如何优雅的使用 Burp Suite最新版
众所周知国内我们使用的 Burp Suite 大多数是大佬们分享出来的专-业-破-jie-版的 Burp Suite,每次启动的时候都得通过加载器来启动 Burp Suite,那有没有更加优雅的方式呢 ...
- Java_Swing中关于关闭窗口的方法
注意:在继承Jframe的过程中,由于工具的快捷功能可以会继承到Frame类,继承到Jframe类打开的窗口默认是可以关闭的,而Frame类打开的窗口点了关闭的没有反应的. 1.关闭子窗口后,父窗口也 ...