关于 Binomial Coefficient is Fun
Solution
应该这个做法不是很常见吧。
我们设 \(f_{i,j}\) 表示前面 \(i\) 个数,选出的数和为 \(j\) 的贡献之和。因为我们有以下式子:
\]
所以,我们可以得到转移式:
\]
然后,我们假设设:
\]
那么,我们就可以看出实际上 \(\prod_{i=1}^{n} F_i(x)\) 就是 \(f_{n,1},f_{n,2},...,f_{n,\infty}\) 的普通型生成函数。
于是,我们只需要求出 \(F_i(x)\) 的式子就好了。
我们可以得到如下推导:
设 \(S=\sum_{i=1}^{\infty} \binom{i}{a}x^{i}\)
则有:
\]
\]
\]
所以,我们可以得到:
\]
那么,我们设 \(s=\sum_{i=1}^{n} a_i\),那么我们就可以得到:
\]
那么这个多项式的第 \(i\) 项的系数就是 \(\binom{i+n-1}{n+s-1}\)。
那么,答案就是:
\]
\]
关于 Binomial Coefficient is Fun的更多相关文章
- Binomial Coefficient(二项式系数)
In mathematics, any of the positive integers that occurs as a coefficient in the binomial theorem is ...
- Solution -「ARC 110D」Binomial Coefficient is Fun
\(\mathcal{Description}\) Link. 给定非负整数序列 \(\{a_n\}\),设 \(\{b_n\}\) 是一个非负整数序列且 \(\sum_{i=1}^nb_i\ ...
- UVA - 10375 Choose and divide[唯一分解定理]
UVA - 10375 Choose and divide Choose and divide Time Limit: 1000MS Memory Limit: 65536K Total Subm ...
- Lucas定理
Lucas' theorem In number theory, Lucas's theorem expresses the remainder of division of the binomial ...
- Conjugate prior relationships
Conjugate prior relationships The following diagram summarizes conjugate prior relationships for a n ...
- java积累
数组的使用 package javaDemo; import java.util.*; /** * * @author Administrator * @version 1.0 * * */ publ ...
- OI不得不知的那些数学定理
Binomial theorem One can define\[{r \choose k}=\frac{r\,(r-1) \cdots (r-k+1)}{k!} =\frac{(r)_k}{k!}\ ...
- UVA10375 Choose and divide 质因数分解
质因数分解: Choose and divide Time Limit: 3000MS Memory Limit: Unknown 64bit IO Format: %lld & %l ...
- Codeforces/TopCoder/ProjectEuler/CodeChef 散题笔记 (持续更新)
最近做到了一些有趣的散题,于是开个Blog记录一下吧… (如果有人想做这些题的话还是不要看题解吧…) 2017-03-16 PE 202 Laserbeam 题意:有一个正三角形的镜子屋,光线从$C$ ...
随机推荐
- react项目实现多语言切换
网站的语言切换功能大家都见过不少,一般都是一个下拉框选择语言,如果让我们想一下怎么实现这个功能,我相信大家都是有哥大概思路,一个语言切换的select,将当前的选择的语言存在全局,根据这个语言的key ...
- 深入研究webpack之Tree Shaking相关属性sideEffects用处
Tree Shaking我原来也只是了解,这次碰巧深入研究了下,就写个博客记录一下,网上有很多讲Tree Shaking的,我写的这篇跟他们侧重点不一样 Tree Shaking相关的基础知识 1 w ...
- Linux与Windows文件同步
Linux与Windows文件同步 本次采用的同步方式是rsync,Rsync是一款免费且强大的同步软件,可以镜像保存整个目录树和文件系统,同时保持原来文件的权限.时间.软硬链接.第一次同步时会复制全 ...
- [源码解析] 深度学习流水线并行 PipeDream(3)--- 转换模型
[源码解析] 深度学习流水线并行 PipeDream(3)--- 转换模型 目录 [源码解析] 深度学习流水线并行 PipeDream(3)--- 转换模型 0x00 摘要 0x01 前言 1.1 改 ...
- openswan一条隧道多保护子网配置
Author : Email : vip_13031075266@163.com Date : 2021.01.22 Copyright : 未经同意不得 ...
- 文件包含上传漏洞&目录遍历命令执行漏洞
文件上传漏洞: 一句话木马 一句话木马主要由两部分组成:执行函数与 接收被执行代码的变量 执行函数: eval() assert() create_function() array_map() arr ...
- ARM架构安装ubuntu系统
一.简介 arm开发板制作系统是比较麻烦,不论使用busybox还是yocto制作根文件系统对新手都比太友好,除非深度定制,否则使用ubuntu系统既可以满足,把更多的精力放在应用开发上. 二.准备材 ...
- 浅谈一种浮标浮岛式水质监测“智能哨兵”助力水质监测,多环境应用ke轻松测水!
浮岛式水质监测站能够在实际使用中,安装方便,能够采集多种参数,溶解氧 氨氮 电导率 盐分 pH值 COD 水位 节省时间和人工,浮标水质监测站是设立在河流.湖泊.水库.近岸海域等流 域内的 ...
- 数据结构逆向分析-List
数据结构逆向分析-List 首先STL中的List就是一个链表,但是肯定C++用了很多封装,所以这里我们来一探究竟. 开始 首先先写一些简单的分析的源代码: #include<iostream& ...
- Java基础系列(4)- 编译型和解释型
概念 有一个外国人要看一本中文的书,有两种方式可以看,一种是把这本书翻译成英文版,另外一种是请一个中文翻译,想看哪边,翻译就翻译哪边. 针对上述的描述,翻译成英文版本的书籍对应的就是编译型,将代码编译 ...