关于 Binomial Coefficient is Fun
Solution
应该这个做法不是很常见吧。
我们设 \(f_{i,j}\) 表示前面 \(i\) 个数,选出的数和为 \(j\) 的贡献之和。因为我们有以下式子:
\]
所以,我们可以得到转移式:
\]
然后,我们假设设:
\]
那么,我们就可以看出实际上 \(\prod_{i=1}^{n} F_i(x)\) 就是 \(f_{n,1},f_{n,2},...,f_{n,\infty}\) 的普通型生成函数。
于是,我们只需要求出 \(F_i(x)\) 的式子就好了。
我们可以得到如下推导:
设 \(S=\sum_{i=1}^{\infty} \binom{i}{a}x^{i}\)
则有:
\]
\]
\]
所以,我们可以得到:
\]
那么,我们设 \(s=\sum_{i=1}^{n} a_i\),那么我们就可以得到:
\]
那么这个多项式的第 \(i\) 项的系数就是 \(\binom{i+n-1}{n+s-1}\)。
那么,答案就是:
\]
\]
关于 Binomial Coefficient is Fun的更多相关文章
- Binomial Coefficient(二项式系数)
In mathematics, any of the positive integers that occurs as a coefficient in the binomial theorem is ...
- Solution -「ARC 110D」Binomial Coefficient is Fun
\(\mathcal{Description}\) Link. 给定非负整数序列 \(\{a_n\}\),设 \(\{b_n\}\) 是一个非负整数序列且 \(\sum_{i=1}^nb_i\ ...
- UVA - 10375 Choose and divide[唯一分解定理]
UVA - 10375 Choose and divide Choose and divide Time Limit: 1000MS Memory Limit: 65536K Total Subm ...
- Lucas定理
Lucas' theorem In number theory, Lucas's theorem expresses the remainder of division of the binomial ...
- Conjugate prior relationships
Conjugate prior relationships The following diagram summarizes conjugate prior relationships for a n ...
- java积累
数组的使用 package javaDemo; import java.util.*; /** * * @author Administrator * @version 1.0 * * */ publ ...
- OI不得不知的那些数学定理
Binomial theorem One can define\[{r \choose k}=\frac{r\,(r-1) \cdots (r-k+1)}{k!} =\frac{(r)_k}{k!}\ ...
- UVA10375 Choose and divide 质因数分解
质因数分解: Choose and divide Time Limit: 3000MS Memory Limit: Unknown 64bit IO Format: %lld & %l ...
- Codeforces/TopCoder/ProjectEuler/CodeChef 散题笔记 (持续更新)
最近做到了一些有趣的散题,于是开个Blog记录一下吧… (如果有人想做这些题的话还是不要看题解吧…) 2017-03-16 PE 202 Laserbeam 题意:有一个正三角形的镜子屋,光线从$C$ ...
随机推荐
- 阿里云服务器上部署java项目(安装jdk,tomcat)
安装JDK a.执行下面的yum指令安装,无线配置环境变量. 1.yum -y update #首先更新一下YUM源2.yum list Java* ---------#列出所有的JDK 3.yum ...
- 剑指 Offer 34. 二叉树中和为某一值的路径
剑指 Offer 34. 二叉树中和为某一值的路径 输入一棵二叉树和一个整数,打印出二叉树中节点值的和为输入整数的所有路径.从树的根节点开始往下一直到叶节点所经过的节点形成一条路径. 示例: 给定如下 ...
- git01_常用命令
git与github介绍 Git是什么 Git是一个开源的[分布式][版本控制系统],用于敏捷高效地处理任何或小或大的项目 版本控制器 CVS/SVN/Git SVN 客户端/服务器 GIT 客户端/ ...
- (4)ElasticSearch在linux环境中搭建集群
1.概述 一个运行中的Elasticsearch实例称为一个节点(node),而集群是由一个或者多个拥有相同cluster.name配置的节点组成,它们共同承担数据和负载的压力.当有节点加入集群中或者 ...
- java 集合特性面试必备
collection 集合体系 数据结构栈和队列栈结构 :先进后出队列结构 :先进先出 数据结构之数组和链表数组结构:查询快.增删慢队列结构 :查询慢.增删快 List集合概述有序集合(也称为序列), ...
- 计算机基础知识以及java JDK、JRE
计算机 计算机(Computer)全称:电子计算机,是一种能够按照程序运行,自动.高速处理海量数据的现代化智能电子设备.由硬件和软件所组成,没有安装任何软件的计算机称为裸机.常见的形式有台式计算机.笔 ...
- JAVA安全基础之代理模式(二)
JAVA安全基础之代理模式(二) 上篇讲到静态代理模式,这时候我们发现,一个代理类只能为一个类服务,如果需要代理的类很多,那么就需要编写大量的代理类,比较繁琐.所以就有了动态代理 动态代理 动态代理的 ...
- oracle报错注入的一些函数
oracle 报错注入 select dbms_xmltranslations.extractxliff((select banner from sys.v_$version where rownum ...
- python-引用/模块
导入文件,先从当前目录下找,找不到从环境变量中找 1.导入模块,实质是把制定的py文件执行一遍. 自己写的模块:要导入的文件在当前目录下的:form 文件夹.py文件名 import 函数名 标准模块 ...
- Android——ProgressBar(进度条)
参考资料来源于菜鸟教程--学的不仅是技术,更是梦想! 学习! 1.常用属性讲解与基础实例 从官方文档,我们看到了这样一个类关系图: ProgressBar继承与View类,直接子类有AbsSeekBa ...