$$\Large{\LaTeX}$$:

\[\Large{\LaTeX}
\]

$ $ 表示行内

$$ $$ 表示独立

$\operatorname{lcm}(x)$\(\operatorname{lcm}(x)\)

$\pm$\(\pm\)

$\equiv$\(\equiv\)

$\pmod{p}$\(\pmod{p}\)

$\%$\(\%\)

$\sqrt[n]{x} \sqrt{x}$\(\sqrt[n]{x} \sqrt{x}\)

$\in \ne$\(\in \ne\)

$\leqslant \geqslant$\(\leqslant \geqslant\)

$\perp \angle 45^\circ$\(\perp \angle \ 45^\circ\)

$\forall \exists$\(\forall \exists\)

$\therefore \& \because$\(\therefore \& \because\)

$\implies \iff$\(\implies \iff\)

$a^{x+2y}_{i,j}$\(a^{x+2y}_{i,j}\)

$\sum\limits_{i=1}^n a_i$\(\sum\limits_{i=1}^n a_i\)

$\prod\limits_{i=1}^n a_i$\(\prod\limits_{i=1}^n a_i\)

$\lim\limits_{n\to\infty}x_n$\(\lim\limits_{n\to\infty}x_n\)

$\int_{-N}^{N}e^x \, dx$\(\int_{-N}^{N}e^x \, dx\)

$\dfrac{1}{x+\dfrac{3}{y+\dfrac{1}{5}}}$\(\dfrac{1}{x+\dfrac{3}{y+\dfrac{1}{5}}}\)

$\dots \vdots \ddots$\(\dots \quad \vdots \quad \ddots\)

$\begin{matrix}a&b\\c&d\end{matrix}$\(\begin{matrix}a&b\\c&d\end{matrix}\)

$\begin{vmatrix}a&b\\c&d\end{vmatrix}$\(\begin{vmatrix}a&b\\c&d\end{vmatrix}\)

$\begin{bmatrix}a&b\\c&d\end{bmatrix}$\(\begin{bmatrix}a&b\\c&d\end{bmatrix}\)

$\begin{Batrix}a&b\\c&d\end{Batrix}$\(\begin{Bmatrix}a&b\\c&d\end{Bmatrix}\)

$\begin{pmatrix}a&b\\c&d\end{pmatrix}$\(\begin{pmatrix}a&b\\c&d\end{pmatrix}\)

$f(x)=\begin{cases} x & x\geqslant0 \\ x^{-1} & x<0 \end{cases}$\(f(x)=\begin{cases} x & x\geqslant0 \\ x^{-1} & x<0 \end{cases}\)

$\begin{aligned} 3 & = 1+1+1 \\ & = 1+2 \end{aligned}$\(\begin{aligned} 3 & = 1+1+1 \\ & = 1+2 \end{aligned}\)

$\begin{aligned} a_1 & = 1 \\ a_2 & = 2 \\ & \dots \\ a_n & = n \end{aligned}$\(\begin{aligned} a_1 & = 1 \\ a_2 & = 2 \\ & \dots \\ a_n & = n \end{aligned}\)

$\Gamma \Delta \Theta \Lambda \Xi \Pi \Sigma \Upsilon \Phi \Psi \Omega$\(\Gamma \Delta \Theta \Lambda \Xi \Pi \Sigma \Upsilon \Phi \Psi \Omega\)

$\alpha \beta \gamma \delta \epsilon \zeta \eta \theta \iota \kappa \lambda$\(\alpha \beta \gamma \delta \epsilon \zeta \eta \theta \iota \kappa \lambda\)

$\mu \nu \xi \omicron \pi \varepsilon \varrho \varsigma \vartheta \varphi \aleph$\(\mu \nu \xi \omicron \pi \varepsilon \varrho \varsigma \vartheta \varphi \aleph\)<-最后一个是希伯来文

$\mathbb{ABCDEFGHIJKLMNOPQRSTUVWXYZ}$\(\mathbb{ABCDEFGHIJKLMNOPQRSTUVWXYZ}\)

$\mathtt{ABCDEFGHIJKLMNOPQRSTUVWXYZ}$\(\mathtt{ABCDEFGHIJKLMNOPQRSTUVWXYZ}\)

$\text{ABCDEFGHIJKLMNOPQRSTUVWXYZ}$\(\text{ABCDEFGHIJKLMNOPQRSTUVWXYZ}\)

$\left(\dfrac{y+\dfrac{2}{3}}{x+\dfrac{2}{3}}\right)^5$\(\left(\dfrac{y+\dfrac{2}{3}}{x+\dfrac{2}{3}}\right)^5\)此功能(使用\left和\right)可以推广到不同的括号

$\left\lfloor\dfrac{1}{2}\right\rfloor \left\lceil\dfrac{1}{2}\right\rceil$\(\left\lfloor\dfrac{1}{2}\right\rfloor \left\lceil\dfrac{1}{2}\right\rceil\)

$\boxed{a^x+b^y=c^z}$\(\boxed{a^x+b^y=c^z}\)

下面 \(m\) 均表示一个中文字符的宽度,即两个英文字符的宽度。

\(x,y\) 均为演示需要,重点为中间空隙大小。

$x \! y$宽度为 \(-\dfrac{m}{6}\)

\(x \! y\)

$xy$宽度为 \(0\)

\(xy\)

$x \, y$宽度为 \(\dfrac{m}{6}\)

\(x \, y\)

$x \; y$宽度为 \(\dfrac{2m}{7}\)

\(x \; y\)

$x \ y$宽度为 \(\dfrac{m}{3}\)

\(x \ y\)

$x \quad y$宽度为 \(m\)

\(x \quad y\)

$x \qquad y$宽度为 \(2m\)

\(x \qquad y\)

随机推荐

  1. 使用栅格系统开发响应式页面——logo+nav实例

    小屏时: 中屏及以上时: <!DOCTYPE html> <html> <head> <meta charset="utf-8"> ...

  2. linux下查看磁盘使用内存及清除日志内存

    1.查看磁盘内存 df -h 2.清理日志内存 echo "">catalina.out

  3. 分布式协调组件Zookeeper之 选举机制与ZAB协议

    Zookeeper简介: Zookeeper是什么: Zookeeper 是⼀个分布式协调服务的开源框架. 主要⽤来解决分布式集群中应⽤系统的⼀致性问题, 例如怎样避免同时操作同⼀数据造成脏读的问题. ...

  4. APMServ中Apache启动失败的原因

    APMServ中Apache启动失败绝大多数的情况是因为APMServ得路径出错和80端口被占用,也有可能您使用的是WIN8系统,下面SJY根据不同情况告诉大家如何解决APMServ中Apache启动 ...

  5. uniapp 封装 request 并 配置跨域,( 本地 + 线上 + 封装 )

    找到上面这个 文件,不管是用 命令创建 还是 用 HBX 创建,都一样会有这个文件的,然后跟着截图复制粘贴就好了. // 这是配置本地能跨域的,或者你可以直接让后端给你设置请求头,避免了跨域. &qu ...

  6. JAVA 之 每日一记 之 算法 ( 长按键入 )

    题目详解: 你的朋友正在使用键盘输入他的名字 name.偶尔,在键入字符 c 时,按键可能会被长按,而字符可能被输入 1 次或多次. 你将会检查键盘输入的字符 typed.如果它对应的可能是你的朋友的 ...

  7. Sentry Web 性能监控 - Web Vitals

    系列 1 分钟快速使用 Docker 上手最新版 Sentry-CLI - 创建版本 快速使用 Docker 上手 Sentry-CLI - 30 秒上手 Source Maps Sentry For ...

  8. MySQL——SQL语句入门

    1.DDL: 数据库定义语言 定义对象:库.表 何为定义: 库的定义: 创建 删除 修改---->修改本身以及库中的对象(表.视图.函数.触发器...) 表的定义: 创建---->定义表的 ...

  9. 基于Vue+Vuex+Vue-Router+axios+mint-ui的移动端电商项目

    第一步:安装Node 1.打开NodeJS的官网,下载和自己系统相配的NodeJS的安装程序,包括32位还是64位一定要选择好,否则会出现安装问题. 下载地址:https://nodejs.org/e ...

  10. Python - 面向对象编程 - 实战(5)

    前言 主要是针对静态方法.类方法.实例方法.类属性.实例属性的混合实战 需求 设计一个 Game 类 属性 定义一个类属性 top_score 记录游戏的历史最高分,这个属性很明显只跟游戏有关,跟实例 ...