Content

有 \(T\) 组询问,每组询问给定一个有 \(n\) 个节点的数,编号为 \(1\sim n\),每个节点一开始都有权值 \(a_i\)。现有 \(m\) 次操作,每次操作选择树上所有节点中权值最大的一个点(如果有多个选择编号最小的),然后将所有和这个点在树上直接相连的点的权值加 \(1\)。求 \(m\) 次操作以后权值最大的点的编号(如果有多个输出编号最小的)。

数据范围:\(1\leqslant n\leqslant 2\times 10^6,1\leqslant m\leqslant 10^{18},1\leqslant a_i\leqslant 2^{31}-1,1\leqslant T\leqslant 10\)。

Solution

比较具有启发性的题目。

我们先把 \(30\) 分的暴力(本人亲测)写完以后,看能不能找到一些规律。

我们接下来以这个图为例来找一下规律,下图是一个拥有 \(12\) 个节点的树,其中每个节点旁边红色的数字代表着它的权值。(图画得可能不是太好,请见谅)

你也可以直接复制下面的对应数据来 \(\texttt{debug}\) 一下:

1
12 x //这里的 x 可以变成任何数
7 2 5 3 3 10 1 6 5 5 6 8
1 2
1 3
1 4
3 5
3 6
6 8
6 9
4 7
4 10
10 11
11 12

我们来模拟一下每次操作:

第一次,选择权值最大的节点 \(6\),然后让与之直接相连的每个节点的权值增加 \(1\),这样,与之直接相连的节点 \(3,8,9\) 的权值分别变成了 \(6,7,6\)。

第二次,第三次,第四次操作都是选择权值最大的节点 \(6\),就不再赘述了。第四次操作完成以后,节点 \(3,8,9\) 的权值分别变成了 \(9,10,9\)。

第五次,选择权值最大的节点,这是我们发现这样的节点有 \(2\) 个,分别是 \(6\) 和 \(8\),然而由于 \(6<8\),所以我们还是选择节点 \(6\),然后让与之直接相连的每个节点的权值增加 \(1\),这样,与之直接相连的节点 \(3,8,9\) 的权值分别变成了 \(10,11,10\)。

第六次,选择权值最大的节点 \(8\),然后让与之直接相连的每个节点的权值增加 \(1\),与之相连的节点 \(6\) 的权值变成了 \(11\)。

第七次,选择权值最大的节点,这是我们发现这样的节点有 \(2\) 个,分别是 \(6\) 和 \(8\),然而由于 \(6<8\),所以我们还是选择节点 \(6\),然后让与之直接相连的每个节点的权值增加 \(1\),这样,与之直接相连的节点 \(3,8,9\) 的权值分别变成了 \(11,12,11\)。

第八次,选择权值最大的节点 \(8\),然后让与之直接相连的每个节点的权值增加 \(1\),与之相连的节点 \(6\) 的权值变成了 \(12\)。

……

继续这样推下去的话你就能够发现,我们后面所选择的节点一定会在 \(6,8\) 之间反复循环,而这两个点又分别是一开始权值最大的点中编号最小的点和与之直接相连的节点中权值最大的点中编号最小的点。所以,我们可以得到以下思路:

  • 记录下来所有与一开始权值最大的点中编号最小的点直接相连的所有点并取当中权值最大的点中编号最小的点。设我们选出来的点的编号分别是 \(k,k'\)。
  • 如果 \(a_k-a_{k'}>m\),那么我们的节点 \(k\) 肯定是最后权值最大的点。
  • 否则,由于最后的答案肯定在两个点之间反复横跳,我们只需要判断一下 \(m-(a_k-a_{k'})\) 的奇偶性即可。如果是奇数,那么答案肯定就是这两个点当中编号更大的,否则肯定就是这两个点当中编号更小的。这里请读者自己思考。

而且我们惊奇地发现,这个做法成功的越过了全网大部分人跳进去的 \(n=1\) 的坑,所以这个做法从某种意义上来讲是很优越的。

Code

int t, n, a[2000007], num[2000007];
long long m; int main() {
//This program is written by Eason_AC
scanf("%d", &t);
while(t--) {
memset(num, 0, sizeof(num));
int ans = 0;
scanf("%d%lld", &n, &m);
for(int i = 1; i <= n; ++i) {
scanf("%d", &a[i]);
if((a[i] > a[ans]) || (a[i] == a[ans] && ans > i)) ans = i;
}
for(int i = 1; i < n; ++i) {
int x, y;
scanf("%d%d", &x, &y);
if(x == ans) num[++num[0]] = y;
else if(y == ans) num[++num[0]] = x;
}
if(!num[0]) {printf("%d\n", ans); continue;}
int kk = 1;
for(int i = 1; i <= num[0]; ++i)
if(a[num[i]] > a[num[kk]]) kk = i;
if(a[ans] - a[num[kk]] > m) printf("%d\n", ans);
else if((m - (a[ans] - a[num[kk]])) % 2) printf("%d\n", max(num[kk], ans));
else printf("%d\n", min(num[kk], ans));
}
return 0;
}

LuoguP7043 「MCOI-03」村国 题解的更多相关文章

  1. 「MCOI-03」村国题解

    第二篇题解! 可能是退役之前的最后一篇题解了 (好像总共都只写了两篇) 不说了,讲题: 题面 题意: 有T个数据 有一颗树(保证所有的的节点都是相连的),有n个节点,每个节点都有相应的权值与序号,现在 ...

  2. LuoguP7127 「RdOI R1」一次函数(function) 题解

    Content 设 \(S_k\) 为直线 \(f(x)=kx+k-1\),直线 \(f(x)=(k+1)x+k\) 与 \(x\) 轴围成的三角形的面积.现在给出 \(t\) 组询问,每组询问给定一 ...

  3. LOJ #2541. 「PKUWC 2018」猎人杀(容斥 , 期望dp , NTT优化)

    题意 LOJ #2541. 「PKUWC 2018」猎人杀 题解 一道及其巧妙的题 , 参考了一下这位大佬的博客 ... 令 \(\displaystyle A = \sum_{i=1}^{n} w_ ...

  4. LOJ #2540. 「PKUWC 2018」随机算法(概率dp)

    题意 LOJ #2540. 「PKUWC 2018」随机算法 题解 朴素的就是 \(O(n3^n)\) dp 写了一下有 \(50pts\) ... 大概就是每个点有三个状态 , 考虑了但不在独立集中 ...

  5. 「GXOI / GZOI2019」简要题解

    「GXOI / GZOI2019」简要题解 LOJ#3083. 「GXOI / GZOI2019」与或和 https://loj.ac/problem/3083 题意:求一个矩阵的所有子矩阵的与和 和 ...

  6. 【题解】#6622. 「THUPC 2019」找树 / findtree(Matrix Tree+FWT)

    [题解]#6622. 「THUPC 2019」找树 / findtree(Matrix Tree+FWT) 之前做这道题不理解,有一点走火入魔了,甚至想要一本近世代数来看,然后通过人类智慧思考后发现, ...

  7. 「POJ 3666」Making the Grade 题解(两种做法)

    0前言 感谢yxy童鞋的dp及暴力做法! 1 算法标签 优先队列.dp动态规划+滚动数组优化 2 题目难度 提高/提高+ CF rating:2300 3 题面 「POJ 3666」Making th ...

  8. FileUpload控件「批次上传 / 多档案同时上传」的范例--以「流水号」产生「变量名称」

    原文出處  http://www.dotblogs.com.tw/mis2000lab/archive/2013/08/19/multiple_fileupload_asp_net_20130819. ...

  9. LOJ #2542. 「PKUWC 2018」随机游走(最值反演 + 树上期望dp + FMT)

    写在这道题前面 : 网上的一些题解都不讲那个系数是怎么推得真的不良心 TAT (不是每个人都有那么厉害啊 , 我好菜啊) 而且 LOJ 过的代码千篇一律 ... 那个系数根本看不出来是什么啊 TAT ...

随机推荐

  1. 「后端小伙伴来学前端了」Vuex进阶操作,让你的代码更加高效(简称如何学会偷懒 【手动狗头】)

    学妹手机里的美照 前言 前一篇写了Vuex基本使用,用起来还稍稍有些繁琐,代码有很多 冗余的地方,这篇就带着大家用更简单的方式来使用Vuex(其实就是怎么更好的偷懒,用更少的代码来完之前的事情) 进入 ...

  2. docker 启动报错:Docker.Core.Backend.BackendException: Error response from daemon: open \\.\pipe\docker_e

    win10 docker启动后报错: Docker.Core.Backend.BackendException:Error response from daemon: open \\.\pipe\do ...

  3. c语言实参与形参的区别

    1 #include<stdio.h> 2 #include<math.h> 3 4 /** 5 * 形参和实参的功能是作数据传送. 6 * 函数调用中发生的数据传送是单向的. ...

  4. 【NOI导刊200908模拟试题02 题4】【二分+Dijkstra】 收费站

    Description 在某个遥远的国家里,有n个城市.编号外1,2,3,-,n. 这个国家的政府修建了m条双向的通路.每条公路连接着两个城市.沿着某条公路,开车从一个城市到另一个城市,需要花费一定的 ...

  5. Matlab 代码注释

    Matlab 代码注释 一直在找类似doxygen一样将程序注释发表成手册的方法,现在发现,Matlab的publish功能自己就能做到. Publish 简介 并非所有注释都能作为文本进行输出,MA ...

  6. R语言与医学统计图形【4】直方图、金字塔图

    R语言基础绘图系统 基础图形--直方图.金字塔图 3.直方图 参数设置及比较. op <- par(mfrow=c(2,3)) data <- rnorm(100,10,5) hist(d ...

  7. Mysql笔记(3)

    查询总数count(1)查询总和sum(数据名) 查询最大值max(数据名) 查询最小值min(数据名) 查询平均值avg(数据名) 去除重复 通过having来过滤group by字句的结果信息 i ...

  8. 01 Windows安装C语言环境

    安装C语言运行环境 双击打开安装文件,进行安装 配置环境变量 将: C:\MinGW\bin;添加到Path变量里面. 验证环境变量是否成功 gcc –v 出现如下图所示,证明安装成功

  9. DOTA数据集

    航拍图像面临的问题 正常图像受重力作用相对固定,航拍图像的物体受拍摄角度影响 航拍图像的物体比例变化很大 某些航拍图像中小物体很密集 传统的数据集面临数据偏差的问题严重 好的数据集必备的几个特征 大量 ...

  10. GraphScope 集群部署

    GraphScope 集群部署 1 k8s集群搭建 大致步骤如下: 安装docker.在ubuntu上,可以简单的通过命令sudo apt install docker.io来安装. 安装kubele ...