Content

有 \(T\) 组询问,每组询问给定一个有 \(n\) 个节点的数,编号为 \(1\sim n\),每个节点一开始都有权值 \(a_i\)。现有 \(m\) 次操作,每次操作选择树上所有节点中权值最大的一个点(如果有多个选择编号最小的),然后将所有和这个点在树上直接相连的点的权值加 \(1\)。求 \(m\) 次操作以后权值最大的点的编号(如果有多个输出编号最小的)。

数据范围:\(1\leqslant n\leqslant 2\times 10^6,1\leqslant m\leqslant 10^{18},1\leqslant a_i\leqslant 2^{31}-1,1\leqslant T\leqslant 10\)。

Solution

比较具有启发性的题目。

我们先把 \(30\) 分的暴力(本人亲测)写完以后,看能不能找到一些规律。

我们接下来以这个图为例来找一下规律,下图是一个拥有 \(12\) 个节点的树,其中每个节点旁边红色的数字代表着它的权值。(图画得可能不是太好,请见谅)

你也可以直接复制下面的对应数据来 \(\texttt{debug}\) 一下:

1
12 x //这里的 x 可以变成任何数
7 2 5 3 3 10 1 6 5 5 6 8
1 2
1 3
1 4
3 5
3 6
6 8
6 9
4 7
4 10
10 11
11 12

我们来模拟一下每次操作:

第一次,选择权值最大的节点 \(6\),然后让与之直接相连的每个节点的权值增加 \(1\),这样,与之直接相连的节点 \(3,8,9\) 的权值分别变成了 \(6,7,6\)。

第二次,第三次,第四次操作都是选择权值最大的节点 \(6\),就不再赘述了。第四次操作完成以后,节点 \(3,8,9\) 的权值分别变成了 \(9,10,9\)。

第五次,选择权值最大的节点,这是我们发现这样的节点有 \(2\) 个,分别是 \(6\) 和 \(8\),然而由于 \(6<8\),所以我们还是选择节点 \(6\),然后让与之直接相连的每个节点的权值增加 \(1\),这样,与之直接相连的节点 \(3,8,9\) 的权值分别变成了 \(10,11,10\)。

第六次,选择权值最大的节点 \(8\),然后让与之直接相连的每个节点的权值增加 \(1\),与之相连的节点 \(6\) 的权值变成了 \(11\)。

第七次,选择权值最大的节点,这是我们发现这样的节点有 \(2\) 个,分别是 \(6\) 和 \(8\),然而由于 \(6<8\),所以我们还是选择节点 \(6\),然后让与之直接相连的每个节点的权值增加 \(1\),这样,与之直接相连的节点 \(3,8,9\) 的权值分别变成了 \(11,12,11\)。

第八次,选择权值最大的节点 \(8\),然后让与之直接相连的每个节点的权值增加 \(1\),与之相连的节点 \(6\) 的权值变成了 \(12\)。

……

继续这样推下去的话你就能够发现,我们后面所选择的节点一定会在 \(6,8\) 之间反复循环,而这两个点又分别是一开始权值最大的点中编号最小的点和与之直接相连的节点中权值最大的点中编号最小的点。所以,我们可以得到以下思路:

  • 记录下来所有与一开始权值最大的点中编号最小的点直接相连的所有点并取当中权值最大的点中编号最小的点。设我们选出来的点的编号分别是 \(k,k'\)。
  • 如果 \(a_k-a_{k'}>m\),那么我们的节点 \(k\) 肯定是最后权值最大的点。
  • 否则,由于最后的答案肯定在两个点之间反复横跳,我们只需要判断一下 \(m-(a_k-a_{k'})\) 的奇偶性即可。如果是奇数,那么答案肯定就是这两个点当中编号更大的,否则肯定就是这两个点当中编号更小的。这里请读者自己思考。

而且我们惊奇地发现,这个做法成功的越过了全网大部分人跳进去的 \(n=1\) 的坑,所以这个做法从某种意义上来讲是很优越的。

Code

int t, n, a[2000007], num[2000007];
long long m; int main() {
//This program is written by Eason_AC
scanf("%d", &t);
while(t--) {
memset(num, 0, sizeof(num));
int ans = 0;
scanf("%d%lld", &n, &m);
for(int i = 1; i <= n; ++i) {
scanf("%d", &a[i]);
if((a[i] > a[ans]) || (a[i] == a[ans] && ans > i)) ans = i;
}
for(int i = 1; i < n; ++i) {
int x, y;
scanf("%d%d", &x, &y);
if(x == ans) num[++num[0]] = y;
else if(y == ans) num[++num[0]] = x;
}
if(!num[0]) {printf("%d\n", ans); continue;}
int kk = 1;
for(int i = 1; i <= num[0]; ++i)
if(a[num[i]] > a[num[kk]]) kk = i;
if(a[ans] - a[num[kk]] > m) printf("%d\n", ans);
else if((m - (a[ans] - a[num[kk]])) % 2) printf("%d\n", max(num[kk], ans));
else printf("%d\n", min(num[kk], ans));
}
return 0;
}

LuoguP7043 「MCOI-03」村国 题解的更多相关文章

  1. 「MCOI-03」村国题解

    第二篇题解! 可能是退役之前的最后一篇题解了 (好像总共都只写了两篇) 不说了,讲题: 题面 题意: 有T个数据 有一颗树(保证所有的的节点都是相连的),有n个节点,每个节点都有相应的权值与序号,现在 ...

  2. LuoguP7127 「RdOI R1」一次函数(function) 题解

    Content 设 \(S_k\) 为直线 \(f(x)=kx+k-1\),直线 \(f(x)=(k+1)x+k\) 与 \(x\) 轴围成的三角形的面积.现在给出 \(t\) 组询问,每组询问给定一 ...

  3. LOJ #2541. 「PKUWC 2018」猎人杀(容斥 , 期望dp , NTT优化)

    题意 LOJ #2541. 「PKUWC 2018」猎人杀 题解 一道及其巧妙的题 , 参考了一下这位大佬的博客 ... 令 \(\displaystyle A = \sum_{i=1}^{n} w_ ...

  4. LOJ #2540. 「PKUWC 2018」随机算法(概率dp)

    题意 LOJ #2540. 「PKUWC 2018」随机算法 题解 朴素的就是 \(O(n3^n)\) dp 写了一下有 \(50pts\) ... 大概就是每个点有三个状态 , 考虑了但不在独立集中 ...

  5. 「GXOI / GZOI2019」简要题解

    「GXOI / GZOI2019」简要题解 LOJ#3083. 「GXOI / GZOI2019」与或和 https://loj.ac/problem/3083 题意:求一个矩阵的所有子矩阵的与和 和 ...

  6. 【题解】#6622. 「THUPC 2019」找树 / findtree(Matrix Tree+FWT)

    [题解]#6622. 「THUPC 2019」找树 / findtree(Matrix Tree+FWT) 之前做这道题不理解,有一点走火入魔了,甚至想要一本近世代数来看,然后通过人类智慧思考后发现, ...

  7. 「POJ 3666」Making the Grade 题解(两种做法)

    0前言 感谢yxy童鞋的dp及暴力做法! 1 算法标签 优先队列.dp动态规划+滚动数组优化 2 题目难度 提高/提高+ CF rating:2300 3 题面 「POJ 3666」Making th ...

  8. FileUpload控件「批次上传 / 多档案同时上传」的范例--以「流水号」产生「变量名称」

    原文出處  http://www.dotblogs.com.tw/mis2000lab/archive/2013/08/19/multiple_fileupload_asp_net_20130819. ...

  9. LOJ #2542. 「PKUWC 2018」随机游走(最值反演 + 树上期望dp + FMT)

    写在这道题前面 : 网上的一些题解都不讲那个系数是怎么推得真的不良心 TAT (不是每个人都有那么厉害啊 , 我好菜啊) 而且 LOJ 过的代码千篇一律 ... 那个系数根本看不出来是什么啊 TAT ...

随机推荐

  1. MySQL 在线开启&关闭GTID模式

    MySQL 在线开启&关闭GTID模式 目录 MySQL 在线开启&关闭GTID模式 基本概述 在线开启GTID 1. 设置GTID校验ENFORCE_GTID_CONSISTENCY ...

  2. Ubuntu怎么修改DNS

    有时候会出现配置好网络之后,可以ping通网关却ping不通www.baidu.com orangepi@orangepi3:~$ ping 192.168.1.1 PING 192.168.1.1 ...

  3. 洛谷 P4437 [HNOI/AHOI2018]排列(贪心+堆,思维题)

    题面传送门 开始 WA ycx 的遗产(bushi 首先可以将题目转化为图论模型:\(\forall i\) 连边 \(a_i\to i\),然后求图的一个拓扑序 \(b_1,b_2,\dots b_ ...

  4. spring通过注解注册bean的方式+spring生命周期

    spring容器通过注解注册bean的方式 @ComponentScan + 组件标注注解 (@Component/@Service...) @ComponentScan(value = " ...

  5. PHP面试经常被问cgi、fastcgi、php-fpm、mod_php的区别

    cgi.fastcgi.php-fpm.mod_php cgi cgi是公共网关接口,用户通过浏览器来访问执行再服务器上的动态程序,CGI是Web 服务器与CGI程序间传输数据的标准.准确来说是一种协 ...

  6. 【pheatmap热图scale报错】Error in hclust(d, method = method):NA/NaN/Inf in foreign function call (arg 11)

    初始数据类似如下: 填充下缺失值 data[data==0] <- NA data[is.na(data)] <- min(data,na.rm = T)*0.01 pheatmap(lo ...

  7. OOM机制

    Linux内核根据应用程序的要求分配内存,通常来说应用程序分配了内存但是并没有实际全部使用,为了提高性能,这部分没用的内存可以留作它用,这部分内存是属于每个进程的,内核直接回收利用的话比较麻烦,所以内 ...

  8. PHP socket Workerman实用的php框架

    PHP socket Workerman是一款开源高性能异步PHP socket即时通讯框架. 非常好用的一款框架,可以支持在线聊天,长连接等 用法 官方 https://www.workerman. ...

  9. Android editttext只能输入不能删除(选中后被软键盘遮住)

    感谢https://www.dutycode.com/post-20.html: 解决方法:在布局外外嵌一层scrollview.

  10. 在 Apple Silicon Mac 上 DFU 模式恢复 macOS 固件

    DFU 模式全新安装 macOS Big Sur 或 macOS Monterey 请访问原文链接:https://sysin.org/blog/apple-silicon-mac-dfu/,查看最新 ...