一、机器学习算法分类:

监督学习:提供数据和数据分类标签。——分类、回归

非监督学习:只提供数据,不提供标签。

半监督学习

强化学习:尝试各种手段,自己去适应环境和规则。总结经验利用反馈,不断提高算法质量

遗传算法:淘汰弱者,留下强者,进行繁衍和变异穿产生更好的算法。

二、选择机器学习算法和数据集

  sklearn中有很多真实的数据集可以引入,也可以根据自己的需求自动生成多种数据集。对于数据集可以对其进行归一化处理

  sklearn中的有着多种多样的算法,每一种算法都有其适用的场合、不同的属性和功能,按需选择。

三、评价机器学习算法:

1、算法效果不好:在训练过程中,可能因为数据集问题,学习效率,参数问题可能导致算法效果不好。

2、评价学习算法:将数据集分为训练集测试集,根据算法在测试集上的表现评价算法,随着训练时间变长,网络层数变多,误差变小,精确度变高,但是变化的速度都是减缓的。

不同的模型有着是个自己的不同的评分方法:

R2-score:衡量回归问题的精度。最大精度也是100%

F1-score:用于测量不均衡数据的精度。

3、交叉验证用于调参(手动写循环):用于算法的调参(不同的参数也就是不同的模型)。

用交叉验证的方法进行调参或者模型选择时不需要手动划分用于k折验证的数据集,只需要将X和Y,还有k作为参数传进去即可:

#for regreesion
losss=-cross_val_score(knn,X,y,cv=10,scoring=’mean_squared_error’)
#for classification
scores=cross_val_score(knn,X,y,cv=10,scoring=’accuracy’)

交叉验证时,对于模型的评分,分类时用精确度accuracy来衡量模型表现,回归时用损失值mean_squard_error来衡量模型表现。

losss和 scores是两个数组,数组的长度为交叉验证的分割份数。

可使用scores.mean()来得到交叉验证的平均分数。

改变Knn中的参数值,根据交叉验证的得分高低来选择合适的模型参数。

4、learn_curve曲线用于过拟合问题横轴数据量,纵轴模型得分

过拟合:对于样本的过度学习,过分关注样本的细节。

解决过拟合:L1/L2 regularization,dropout(留出法)

为了找出欠拟合和过拟合的节点我们可以绘制learn_curve曲线,这是一个根据数据量不同显示算法性能的图。显示了过拟合问题的两种误差:蓝色是traindata的算法表现,红色是testdata的算法表现。因为模型是基于traindata进行训练的,所以其在traindata上的表现更好一些。

train_sizes,train_loss,test_loss=learning_curve(
  SVC(gramma=0.001),
  X,
  y, 
  Cv=10.
  Scoring=’mean_squard_error’,
  Train_sizes=[0.1,0.25,0.5,0.75,1])
Train_loss_mean=-np.mean(train_loss,axis=1)  #10次交叉验证结果取平均
Test_loss_mean=-np.mean(test_loss,axis=1)

train_loss,test_loss是二维数组,长度为5,即为Train_sizes的步数

train_loss[0]是一个数组,存放0.1数据量时10个交叉验证的结果。

如上图所示,黄色警告处即为欠拟合和过拟合的分界点处。

5、使用交叉验证validation_curve自动调参:横坐标是模型参数,纵坐标是模型交叉验证得分

param_range = np.logspace(-6, -2.3, 5)
train_loss, test_loss = validation_curve(
SVC(), X, y, param_name='gamma', param_range=param_range, cv=10,
scoring='mean_squared_error')
train_loss_mean = -np.mean(train_loss, axis=1)
test_loss_mean = -np.mean(test_loss, axis=1)
plt.plot(param_range, train_loss_mean, 'o-', color="r",
label="Training")
plt.plot(param_range, test_loss_mean, 'o-', color="g",
label="Cross-validation")
plt.xlabel("gamma")
plt.ylabel("Loss")
plt.legend(loc="best")
plt.show()

train_loss,test_loss是二维数组,长度为参数的取值个数

train_loss[0]是一个数组,存放参数为某一个值时10个交叉验证的结果。

以模型参数为横坐标,以模型交叉验证得分为纵坐标绘图,最低点即为最佳参数。

6、训练好的模型可以保存至本地以方便下次调用

莫烦python教程学习笔记——总结篇的更多相关文章

  1. 莫烦python教程学习笔记——保存模型、加载模型的两种方法

    # View more python tutorials on my Youtube and Youku channel!!! # Youtube video tutorial: https://ww ...

  2. 莫烦python教程学习笔记——validation_curve用于调参

    # View more python learning tutorial on my Youtube and Youku channel!!! # Youtube video tutorial: ht ...

  3. 莫烦python教程学习笔记——learn_curve曲线用于过拟合问题

    # View more python learning tutorial on my Youtube and Youku channel!!! # Youtube video tutorial: ht ...

  4. 莫烦python教程学习笔记——利用交叉验证计算模型得分、选择模型参数

    # View more python learning tutorial on my Youtube and Youku channel!!! # Youtube video tutorial: ht ...

  5. 莫烦python教程学习笔记——数据预处理之normalization

    # View more python learning tutorial on my Youtube and Youku channel!!! # Youtube video tutorial: ht ...

  6. 莫烦python教程学习笔记——线性回归模型的属性

    #调用查看线性回归的几个属性 # Youtube video tutorial: https://www.youtube.com/channel/UCdyjiB5H8Pu7aDTNVXTTpcg # ...

  7. 莫烦python教程学习笔记——使用波士顿数据集、生成用于回归的数据集

    # View more python learning tutorial on my Youtube and Youku channel!!! # Youtube video tutorial: ht ...

  8. 莫烦python教程学习笔记——使用鸢尾花数据集

    # View more python learning tutorial on my Youtube and Youku channel!!! # Youtube video tutorial: ht ...

  9. 莫烦大大TensorFlow学习笔记(9)----可视化

      一.Matplotlib[结果可视化] #import os #os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' import tensorflow as tf i ...

随机推荐

  1. go微服务框架Kratos笔记(六)链路追踪实战

    什么是链路追踪 借用阿里云链路追踪文档来解释 分布式链路追踪(Distributed Tracing),也叫 分布式链路跟踪,分布式跟踪,分布式追踪 等等,它为分布式应用的开发者提供了完整的调用链路还 ...

  2. gorm框架表名自动加s问题

    查看日志会发现表名自动加了s 在model实现以下方法即可解决 type UsUser struct { ID int64 `gorm:"column:id" db:"c ...

  3. [luogu5361]热闹的聚会与尴尬的聚会

    由于两者是独立的,我们希望两者的$p$和$q$都最大 考虑最大的$p$,先全部邀请,此时要增大$p$显然必须要删去当前度数最小的点,不断删除之后将每一次度数最小值对答案取max即可 对于$q$也即最大 ...

  4. [hdu6715]算术

    首先要知道一个式子:$\mu(lcm(i,j))=\mu(i)\cdot \mu(j)\cdot \mu(gcd(i,j))$(分是否为0讨论)令$d=gcd(i,j)$,$n'=\lfloor n/ ...

  5. layui增加转圈效果

    var loadix = layer.load(1, {shade: [0.1,'#fff']}); layer.close(loadix);

  6. go 自定义http.Client - 动态修改请求Body

    前言 在对接Alexa Smart Home时,有的请求Payload中需要传入Access Token,但是这个Token是由OAuth2 Client管理的,封装Payload时并不知道Acces ...

  7. Python的数据解析

  8. DPC++中的现代C++语言特性

    Ⅰ DPC++简介 DPC++是Data Parallel C++(数据并行C++)的首字母缩写,它是Intel为了将SYCL引入LLVM和oneAPI所开发的开源项目.SYCL是为了提高各种加速设备 ...

  9. Codeforces 375C - Circling Round Treasures(状压 dp+最短路转移)

    题面传送门 注意到这题中宝藏 \(+\) 炸弹个数最多只有 \(8\) 个,故考虑状压,设 \(dp[x][y][S]\) 表示当前坐标为 \((x,y)\),有且仅有 \(S\) 当中的物品被包围在 ...

  10. Codeforces 870F - Path(数论+分类讨论+正难则反)

    Codeforces 题目传送门 & 洛谷题目传送门 首先考虑 \(d(u,v)\) 是个什么东西,分情况讨论: \(u\not\perp v\),\(d(u,v)=1\) \(u\perp ...