\(\mathcal{Description}\)

  Link.

  给定一个含 \(n\) 个点 \(m\) 条边的简单无向图,每条边的两种定向方法各有权值,求使得图强连通且定向权值和最小的方法。

  \(n\le 18\)。

\(\mathcal{Solution}\)

  涉及到叫做“耳分解”的知识点。

有向图 \(G=(V,E)\) 是否强连通有以下判别方法:

  • 取任意 \(u\in V\),令点集 \(S=\{u\}\);
  • 反复取 \(x,y\in S\),以及连接 \(x,y\) 的一条有向路径 \(P=\lang x,u_1,\cdots,u_k,y\rang\),满足 \(u_i\not\in S,~i\in[1,k]\),并令 \(S\leftarrow S\cup\{u_1,\cdots,u_k\}\)。
  • 若 \(S=V\),则 \(G\) 强连通;否则即找不到增广路 \(P\),\(G\) 非强连通。

其中 \(P\) 就是一个“耳”,这就是“耳分解”。

——当然“耳”貌似最初定义于无向图。

  知道了这个构造强连通图的 trick 就极简了,首先在双向边权中随便选一个预支付代价,并令 \(f(S)\) 表示在 \(S\) 的导出子图内使 \(S\) 强连通的最小代价,\(g(S,x,y,0/1)\) 表示点集 \(S\) 中,当前正在构造的“耳”从 \(x\) 出发,希望回到 \(y\),不能/能 直接走 \(\lang x,y\rang\) 这条边。随便转移即可。复杂度上限是 \(\mathcal O(2^nn^3)\),但算法本身和状态合法性带来了小常数√

\(\mathcal{Code}\)

/*~Rainybunny~*/

#include <cstdio>
#include <cstring> #define rep( i, l, r ) for ( int i = l, rep##i = r; i <= rep##i; ++i )
#define per( i, r, l ) for ( int i = r, per##i = l; i >= per##i; --i ) const int MAXN = 18, IINF = 0x3f3f3f3f;
int n, adj[MAXN + 5][MAXN + 5], f[1 << MAXN], g[1 << MAXN][MAXN][MAXN][2]; inline void chkmin( int& a, const int b ) { b < a && ( a = b ); }
inline int imin( const int a, const int b ) { return a < b ? a : b; } int main() {
// freopen( "data.in", "r", stdin ); scanf( "%d", &n );
rep ( i, 0, n - 1 ) rep ( j, 0, n - 1 ) scanf( "%d", &adj[i][j] ); int ans = 0;
rep ( i, 0, n - 1 ) rep ( j, i + 1, n - 1 ) {
if ( ~adj[i][j] ) {
int t = imin( adj[i][j], adj[j][i] );
ans += t, adj[i][j] -= t, adj[j][i] -= t;
}
} memset( f, 0x3f, sizeof f ), memset( g, 0x3f, sizeof g ), f[1] = 0;
rep ( S, 1, ( 1 << n ) - 1 ) if ( S & 1 ) {
rep ( u, 0, n - 1 ) if ( S >> u & 1 ) {
rep ( v, 0, n - 1 ) if ( S >> v & 1 && ~adj[u][v] ) {
chkmin( f[S], g[S][u][v][1] + adj[u][v] );
}
} rep ( u, 0, n - 1 ) if ( S >> u & 1 ) {
rep ( v, 0, n - 1 ) if ( S >> v & 1 ) {
chkmin( g[S][u][v][0], f[S] );
}
} rep ( u, 0, n - 1 ) if ( S >> u & 1 ) {
rep ( v, 0, n - 1 ) if ( S >> v & 1 ) {
int* cur = g[S][u][v];
if ( cur[0] != IINF ) {
rep ( w, 0, n - 1 ) if ( ~adj[u][w] && !( S >> w & 1 ) ) {
chkmin( g[S | 1 << w][w][v][u != v],
cur[0] + adj[u][w] );
}
}
if ( cur[1] != IINF ) {
rep ( w, 0, n - 1 ) if ( ~adj[u][w] && !( S >> w & 1 ) ) {
chkmin( g[S | 1 << w][w][v][1], cur[1] + adj[u][w] );
}
}
}
}
} printf( "%d\n", f[( 1 << n ) - 1] == IINF ? -1 : ans + f[( 1 << n ) - 1] );
return 0;
}

Solution -「Gym 102759C」Economic One-way Roads的更多相关文章

  1. Solution -「Gym 102979E」Expected Distance

    \(\mathcal{Description}\)   Link.   用给定的 \(\{a_{n-1}\},\{c_n\}\) 生成一棵含有 \(n\) 个点的树,其中 \(u\) 连向 \([1, ...

  2. Solution -「Gym 102979L」 Lights On The Road

    \(\mathcal{Description}\)   Link.   给定序列 \(\{w_n\}\),选择 \(i\) 位置的代价为 \(w_i\),要求每个位置要不被选择,要不左右两个位置至少被 ...

  3. Solution -「Gym 102956F」Find the XOR

    \(\mathcal{Description}\)   Link.   给定 \(n\) 个点 \(m\) 条边的连通无向图 \(G\),边有边权.其中 \(u,v\) 的距离 \(d(u,v)\) ...

  4. Solution -「Gym 102956B」Beautiful Sequence Unraveling

    \(\mathcal{Description}\)   Link.   求长度为 \(n\),值域为 \([1,m]\) 的整数序列 \(\lang a_n\rang\) 的个数,满足 \(\not\ ...

  5. Solution -「Gym 102956F」Border Similarity Undertaking

    \(\mathcal{Description}\)   Link.   给定一张 \(n\times m\) 的表格,每个格子上写有一个小写字母.求其中长宽至少为 \(2\),且边界格子上字母相同的矩 ...

  6. Solution -「Gym 102956A」Belarusian State University

    \(\mathcal{Description}\)   Link.   给定两个不超过 \(2^n-1\) 次的多项式 \(A,B\),对于第 \(i\in[0,n)\) 个二进制位,定义任意一个二元 ...

  7. Solution -「Gym 102798I」Sean the Cuber

    \(\mathcal{Description}\)   Link.   给定两个可还原的二阶魔方,求从其中一个状态拧到另一个状态的最小步数.   数据组数 \(T\le2.5\times10^5\). ...

  8. Solution -「Gym 102798K」Tree Tweaking

    \(\mathcal{Description}\)   Link.   给定排列 \(\{p_n\}\),求任意重排 \(p_{l..r}\) 的元素后,将 \(\{p_n\}\) 依次插入二叉搜索树 ...

  9. Solution -「Gym 102798E」So Many Possibilities...

    \(\mathcal{Description}\)   Link.   给定非负整数序列 \(\{a_n\}\) 和 \(m\),每次随机在 \(\{a\}\) 中取一个非零的 \(a_i\)(保证存 ...

随机推荐

  1. Ant 调用 Shell/CMD 命令

    Ant中调用Makefile,使用shell中的make命令 <?xml version="1.0" encoding="utf-8" ?> < ...

  2. 微服务架构 | 3.4 HashiCorp Consul 注册中心

    目录 前言 1. Consul 基础知识 1.1 Consul 是什么 1.2 Consul 的特点 2. 安装并运行 Consul 服务器 2.1 下载 Consul 2.2 运行 Consul 服 ...

  3. [JavaWeb]反序列化分析(二)--CommonCollections1

    反序列化分析(二)--CommonCollections1 链子分析 首先新建一个TransformedMap,其中二三参数为可控,后续要用到 当TransformedMap执行put方法时,会分别执 ...

  4. 关于网页中鼠标动作 onfocus onblur focus()

    其中: onFocus事件就是当光标落在文本框中时发生的事件. onBlur事件是光标失去焦点时发生的事件. 例如: <textarea onfocus="if(hello') {va ...

  5. ajax的核心

    <script> // ajax 简称(a 代表异步 j 代表javascript a 代表 and x 代表xml--是一种带有标签的数据格式,被json取代了) //ajax 是异步对 ...

  6. 机器学习-逻辑回归与SVM的联系与区别

    (搬运工) 逻辑回归(LR)与SVM的联系与区别 LR 和 SVM 都可以处理分类问题,且一般都用于处理线性二分类问题(在改进的情况下可以处理多分类问题,如LR的Softmax回归用在深度学习的多分类 ...

  7. 【转载】Systemd 入门教程:实战篇

    作者: 阮一峰 日期: 2016年3月 8日 上一篇文章,我介绍了 Systemd 的主要命令,今天介绍如何使用它完成一些基本的任务. 一.开机启动 对于那些支持 Systemd 的软件,安装的时候, ...

  8. LNMP架构搭建

    目录 一:LNMP架构简介 1.Nginx与uwsgi 二:django框架+python 1.创建用户 2.安装依赖包 3.安装uwsgi和django 4.测试python 5.创建django项 ...

  9. RMAN-20201: datafile not found in the recovery catalog

    oracle恢复报错如下: Recovery Manager: Release 10.2.0.4.0 - Production on Fri Aug 28 14:31:31 2015 Copyrigh ...

  10. python10day

    昨日回顾 函数是以功能为导向,减少重复代码.增强可读性. 函数的调用:func().写几次执行几次 函数的返回值return 终止函数 return单个值 return多个值,按元组返回 函数的参数: ...