Solution -「洛谷 P4449」于神之怒加强版
\(\mathcal{Description}\)
Link.
给定 \(k\) 和 \(T\) 组 \(n,m\),对于每组,求
\]
\(T\le2\times10^3\),\(n,m,k\le5\times10^6\)。
\(\mathcal{Solution}\)
几个月没推式子找找手感 qwq。(
不妨设 \(n\le m\):
\sum_{i=1}^n\sum_{j=1}^m\operatorname{gcd}^k(i,j)&=\sum_{d=1}^nd^k\sum_{i=1}^{\lfloor\frac{n}d \rfloor}\sum_{j=1}^{\lfloor\frac{m}d \rfloor}[i\perp j]\\
&=\sum_{d=1}^nd^k\sum_{d'=1}^{\lfloor\frac{n}d \rfloor}\mu(d')\lfloor\frac{n}{dd'}\rfloor\lfloor\frac{m}{dd'}\rfloor\\
&=\sum_{T=1}^n\lfloor\frac{n}{T}\rfloor\lfloor\frac{m}{T}\rfloor\sum_{d|T}d^k\mu(\frac{T}d),~~~~\text{let }T=dd'\\
&=\sum_{T=1}^n\lfloor\frac{n}{T}\rfloor\lfloor\frac{m}{T}\rfloor(\operatorname{id}^k\star\mu)(T)
\end{aligned}
\]
\(\operatorname{id}^k\star\mu\) 积性,可以线性筛筛出。此后整除分块处理询问。复杂度 \(\mathcal O(n)-\mathcal O(\sqrt n)\)。
\(\mathcal{Code}\)
/* Clearink */
#include <cstdio>
#define rep( i, l, r ) for ( int i = l, repEnd##i = r; i <= repEnd##i; ++i )
#define per( i, r, l ) for ( int i = r, repEnd##i = l; i >= repEnd##i; --i )
inline int rint () {
int x = 0, f = 1; char s = getchar ();
for ( ; s < '0' || '9' < s; s = getchar () ) f = s == '-' ? -f : f;
for ( ; '0' <= s && s <= '9'; s = getchar () ) x = x * 10 + ( s ^ '0' );
return x * f;
}
template<typename Tp>
inline void wint ( Tp x ) {
if ( x < 0 ) putchar ( '-' ), x = -x;
if ( 9 < x ) wint ( x / 10 );
putchar ( x % 10 ^ '0' );
}
const int MAXN = 5e6, MOD = 1e9 + 7;
int n, m, K;
int pn, pr[MAXN + 5], mu[MAXN + 5], pwr[MAXN + 5], idm[MAXN + 5];
bool vis[MAXN + 5];
inline int imin ( const int a, const int b ) { return a < b ? a : b; }
inline int mul ( const long long a, const int b ) { return a * b % MOD; }
inline int sub ( int a, const int b ) { return ( a -= b ) < 0 ? a + MOD : a; }
inline int add ( int a, const int b ) { return ( a += b ) < MOD ? a : a - MOD; }
inline int mpow ( int a, int b ) {
int ret = 1;
for ( ; b; a = mul ( a, a ), b >>= 1 ) ret = mul ( ret, b & 1 ? a : 1 );
return ret;
}
inline void sieve ( const int n ) {
pwr[1] = mu[1] = idm[1] = 1;
rep ( i, 2, n ) {
if ( !vis[i] ) {
mu[pr[++pn] = i] = MOD - 1;
pwr[i] = mpow ( i, K );
idm[i] = add ( mu[i], pwr[i] );
}
for ( int j = 1, t; ( t = i * pr[j] ) <= n; ++j ) {
vis[t] = true, pwr[t] = mul ( pwr[i], pwr[pr[j]] );
if ( !( i % pr[j] ) ) {
idm[t] = mul ( pwr[pr[j]], idm[i] );
break;
}
mu[t] = ( MOD - mu[i] ) % MOD;
idm[t] = mul ( idm[i], idm[pr[j]] );
}
}
rep ( i, 1, n ) idm[i] = add ( idm[i], idm[i - 1] );
}
int main () {
int T = rint (); K = rint ();
sieve ( MAXN );
while ( T-- ) {
n = rint (), m = rint ();
int ans = 0;
for ( int l = 1, r; l <= n && l <= m; l = r + 1 ) {
r = imin ( n / ( n / l ), m / ( m / l ) );
ans = add ( ans, mul ( mul ( n / l, m / l ),
sub ( idm[r], idm[l - 1] ) ) );
}
wint ( ans ), putchar ( '\n' );
}
return 0;
}
Solution -「洛谷 P4449」于神之怒加强版的更多相关文章
- Solution -「洛谷 P4372」Out of Sorts P
\(\mathcal{Description}\) OurOJ & 洛谷 P4372(几乎一致) 设计一个排序算法,设现在对 \(\{a_n\}\) 中 \([l,r]\) 内的元素排 ...
- Note/Solution -「洛谷 P5158」「模板」多项式快速插值
\(\mathcal{Description}\) Link. 给定 \(n\) 个点 \((x_i,y_i)\),求一个不超过 \(n-1\) 次的多项式 \(f(x)\),使得 \(f(x ...
- Solution -「洛谷 P4198」楼房重建
\(\mathcal{Description}\) Link. 给定点集 \(\{P_n\}\),\(P_i=(i,h_i)\),\(m\) 次修改,每次修改某个 \(h_i\),在每次修改后 ...
- Solution -「洛谷 P6577」「模板」二分图最大权完美匹配
\(\mathcal{Description}\) Link. 给定二分图 \(G=(V=X\cup Y,E)\),\(|X|=|Y|=n\),边 \((u,v)\in E\) 有权 \(w( ...
- Solution -「洛谷 P6021」洪水
\(\mathcal{Description}\) Link. 给定一棵 \(n\) 个点的带点权树,删除 \(u\) 点的代价是该点点权 \(a_u\).\(m\) 次操作: 修改单点点权. ...
- Solution -「洛谷 P4719」「模板」"动态 DP" & 动态树分治
\(\mathcal{Description}\) Link. 给定一棵 \(n\) 个结点的带权树,\(m\) 次单点点权修改,求出每次修改后的带权最大独立集. \(n,m\le10^5 ...
- Solution -「洛谷 P5236」「模板」静态仙人掌
\(\mathcal{Description}\) Link. 给定一个 \(n\) 个点 \(m\) 条边的仙人掌,\(q\) 组询问两点最短路. \(n,q\le10^4\),\(m\ ...
- Solution -「洛谷 P4320」道路相遇
\(\mathcal{Description}\) Link. 给定一个 \(n\) 个点 \(m\) 条边的连通无向图,并给出 \(q\) 个点对 \((u,v)\),询问 \(u\) 到 ...
- Solution -「洛谷 P5827」边双连通图计数
\(\mathcal{Description}\) link. 求包含 \(n\) 个点的边双连通图的个数. \(n\le10^5\). \(\mathcal{Solution}\) ...
随机推荐
- CVE-2020-0786(永恒之黑) GetShell
描述 Microsoft服务器消息块3.1.1(SMBv3)协议处理某些请求的方式中存在一个远程执行代码漏洞,也称为" Windows SMBv3客户端/服务器远程执行代码漏洞". ...
- UDP代码编写、操作系统发展史、多道技术、进程理论与代码层面创建、进程join方法与进程对象方法
昨日内容回顾 socket基本使用 # 内置的模块 import socket s = socket.socket() # 默认是TCP协议 也可以切换为UDP协议 s.bind((ip,port)) ...
- 利用词向量进行推理(Reasoning with word vectors)
The amazing power of word vectors | the morning paper (acolyer.org) What is a word vector? At one le ...
- mysql主从模型下如果保证主误删除数据,尽可能避免数据丢失方案
- SuperPoint: Self-Supervised Interest Point Detection and Description 论文笔记
Introduction 这篇文章设计了一种自监督网络框架,能够同时提取特征点的位置以及描述子.相比于patch-based方法,本文提出的算法能够在原始图像提取到像素级精度的特征点的位置及其描述子. ...
- C++的set重载运算符
转载: https://www.cnblogs.com/zhihaospace/p/12843802.html set 容器模版需要3个泛型参数,如下: template<class T, cl ...
- HowToDoInJava 其它教程 2 · 翻译完毕
原文:HowToDoInJava 协议:CC BY-NC-SA 4.0 欢迎任何人参与和完善:一个人可以走的很快,但是一群人却可以走的更远. ApacheCN 学习资源 目录 JMS 教程 JMS 教 ...
- Nginx 根据不同的域名来代理转发内部主机-HTTP和HTTPS
一.需求 由于公司只有一个公网,很多 web 项目都想通过 80 或 443 端口来访问,所以需要 Nginx 充当公司网关. 把唯一的公网 IP 80 端口和 443 端口跟 Nginx 网关主机 ...
- 技术管理进阶——Leader应该关注成长慢的同学吗?
原创不易,求分享.求一键三连 两个故事 我该怎么办? 在大学毕业的时候,恩师跟我说了一个故事: 有一个女同学跟他说,不知道毕业了该干撒,不知道该怎么办. 正处于「低谷期」的恩师突然一怔,想到貌似自己 ...
- asp.net core 中的各种路径
1.获取完整网址URL 方法一:先引用"using Microsoft.AspNetCore.Http.Extensions;",然后直接用"Request.GetDis ...