\(\mathcal{Description}\)

  Link.

  给定 \(k\) 和 \(T\) 组 \(n,m\),对于每组,求

\[\sum_{i=1}^n\sum_{j=1}^m\operatorname{gcd}^k(i,j)\bmod(10^9+7)
\]

  \(T\le2\times10^3\),\(n,m,k\le5\times10^6\)。

\(\mathcal{Solution}\)

  几个月没推式子找找手感 qwq。(

  不妨设 \(n\le m\):

\[\begin{aligned}
\sum_{i=1}^n\sum_{j=1}^m\operatorname{gcd}^k(i,j)&=\sum_{d=1}^nd^k\sum_{i=1}^{\lfloor\frac{n}d \rfloor}\sum_{j=1}^{\lfloor\frac{m}d \rfloor}[i\perp j]\\
&=\sum_{d=1}^nd^k\sum_{d'=1}^{\lfloor\frac{n}d \rfloor}\mu(d')\lfloor\frac{n}{dd'}\rfloor\lfloor\frac{m}{dd'}\rfloor\\
&=\sum_{T=1}^n\lfloor\frac{n}{T}\rfloor\lfloor\frac{m}{T}\rfloor\sum_{d|T}d^k\mu(\frac{T}d),~~~~\text{let }T=dd'\\
&=\sum_{T=1}^n\lfloor\frac{n}{T}\rfloor\lfloor\frac{m}{T}\rfloor(\operatorname{id}^k\star\mu)(T)
\end{aligned}
\]

  \(\operatorname{id}^k\star\mu\) 积性,可以线性筛筛出。此后整除分块处理询问。复杂度 \(\mathcal O(n)-\mathcal O(\sqrt n)\)。

\(\mathcal{Code}\)

/* Clearink */

#include <cstdio>

#define rep( i, l, r ) for ( int i = l, repEnd##i = r; i <= repEnd##i; ++i )
#define per( i, r, l ) for ( int i = r, repEnd##i = l; i >= repEnd##i; --i ) inline int rint () {
int x = 0, f = 1; char s = getchar ();
for ( ; s < '0' || '9' < s; s = getchar () ) f = s == '-' ? -f : f;
for ( ; '0' <= s && s <= '9'; s = getchar () ) x = x * 10 + ( s ^ '0' );
return x * f;
} template<typename Tp>
inline void wint ( Tp x ) {
if ( x < 0 ) putchar ( '-' ), x = -x;
if ( 9 < x ) wint ( x / 10 );
putchar ( x % 10 ^ '0' );
} const int MAXN = 5e6, MOD = 1e9 + 7;
int n, m, K;
int pn, pr[MAXN + 5], mu[MAXN + 5], pwr[MAXN + 5], idm[MAXN + 5];
bool vis[MAXN + 5]; inline int imin ( const int a, const int b ) { return a < b ? a : b; }
inline int mul ( const long long a, const int b ) { return a * b % MOD; }
inline int sub ( int a, const int b ) { return ( a -= b ) < 0 ? a + MOD : a; }
inline int add ( int a, const int b ) { return ( a += b ) < MOD ? a : a - MOD; }
inline int mpow ( int a, int b ) {
int ret = 1;
for ( ; b; a = mul ( a, a ), b >>= 1 ) ret = mul ( ret, b & 1 ? a : 1 );
return ret;
} inline void sieve ( const int n ) {
pwr[1] = mu[1] = idm[1] = 1;
rep ( i, 2, n ) {
if ( !vis[i] ) {
mu[pr[++pn] = i] = MOD - 1;
pwr[i] = mpow ( i, K );
idm[i] = add ( mu[i], pwr[i] );
}
for ( int j = 1, t; ( t = i * pr[j] ) <= n; ++j ) {
vis[t] = true, pwr[t] = mul ( pwr[i], pwr[pr[j]] );
if ( !( i % pr[j] ) ) {
idm[t] = mul ( pwr[pr[j]], idm[i] );
break;
}
mu[t] = ( MOD - mu[i] ) % MOD;
idm[t] = mul ( idm[i], idm[pr[j]] );
}
}
rep ( i, 1, n ) idm[i] = add ( idm[i], idm[i - 1] );
} int main () {
int T = rint (); K = rint ();
sieve ( MAXN );
while ( T-- ) {
n = rint (), m = rint ();
int ans = 0;
for ( int l = 1, r; l <= n && l <= m; l = r + 1 ) {
r = imin ( n / ( n / l ), m / ( m / l ) );
ans = add ( ans, mul ( mul ( n / l, m / l ),
sub ( idm[r], idm[l - 1] ) ) );
}
wint ( ans ), putchar ( '\n' );
}
return 0;
}

Solution -「洛谷 P4449」于神之怒加强版的更多相关文章

  1. Solution -「洛谷 P4372」Out of Sorts P

    \(\mathcal{Description}\)   OurOJ & 洛谷 P4372(几乎一致)   设计一个排序算法,设现在对 \(\{a_n\}\) 中 \([l,r]\) 内的元素排 ...

  2. Note/Solution -「洛谷 P5158」「模板」多项式快速插值

    \(\mathcal{Description}\)   Link.   给定 \(n\) 个点 \((x_i,y_i)\),求一个不超过 \(n-1\) 次的多项式 \(f(x)\),使得 \(f(x ...

  3. Solution -「洛谷 P4198」楼房重建

    \(\mathcal{Description}\)   Link.   给定点集 \(\{P_n\}\),\(P_i=(i,h_i)\),\(m\) 次修改,每次修改某个 \(h_i\),在每次修改后 ...

  4. Solution -「洛谷 P6577」「模板」二分图最大权完美匹配

    \(\mathcal{Description}\)   Link.   给定二分图 \(G=(V=X\cup Y,E)\),\(|X|=|Y|=n\),边 \((u,v)\in E\) 有权 \(w( ...

  5. Solution -「洛谷 P6021」洪水

    \(\mathcal{Description}\)   Link.   给定一棵 \(n\) 个点的带点权树,删除 \(u\) 点的代价是该点点权 \(a_u\).\(m\) 次操作: 修改单点点权. ...

  6. Solution -「洛谷 P4719」「模板」"动态 DP" & 动态树分治

    \(\mathcal{Description}\)   Link.   给定一棵 \(n\) 个结点的带权树,\(m\) 次单点点权修改,求出每次修改后的带权最大独立集.   \(n,m\le10^5 ...

  7. Solution -「洛谷 P5236」「模板」静态仙人掌

    \(\mathcal{Description}\)   Link.   给定一个 \(n\) 个点 \(m\) 条边的仙人掌,\(q\) 组询问两点最短路.   \(n,q\le10^4\),\(m\ ...

  8. Solution -「洛谷 P4320」道路相遇

    \(\mathcal{Description}\)   Link.   给定一个 \(n\) 个点 \(m\) 条边的连通无向图,并给出 \(q\) 个点对 \((u,v)\),询问 \(u\) 到 ...

  9. Solution -「洛谷 P5827」边双连通图计数

    \(\mathcal{Description}\)   link.   求包含 \(n\) 个点的边双连通图的个数.   \(n\le10^5\). \(\mathcal{Solution}\)    ...

随机推荐

  1. Go的日志库go-logging

    配置文件config.yaml log: prefix: '[MY-LOG] ' log-file: true stdout: 'DEBUG' file: 'DEBUG' config/config. ...

  2. HttpServer: 基于IOCP模型且集成Openssl的轻量级高性能web服务器

    2021年4月写过一个轻量级的web服务器HttpServer,见文章: <HttpServer:一款Windows平台下基于IOCP模型的高并发轻量级web服务器>,但一直没有时间添加O ...

  3. 记一次 .NET 某药品仓储管理系统 卡死分析

    一:背景 1. 讲故事 这个月初,有位朋友wx上找到我,说他的api过一段时间后,就会出现只有请求,没有响应的情况,截图如下: 从朋友的描述中看样子程序是被什么东西卡住了,这种卡死的问题解决起来相对简 ...

  4. 《剑指offer》面试题50. 第一个只出现一次的字符

    问题描述 在字符串 s 中找出第一个只出现一次的字符.如果没有,返回一个单空格. 示例: s = "abaccdeff" 返回 "b" s = "&q ...

  5. CAS学习笔记四:CAS单点登出流程

    CAS 的登出包含两种情况,一种是CAS客户端登出,另一种是CAS单点登出,使用流程图说明这两者的不同.(一图胜千言) 总结自官方文档 CAS客户端登出流程 如图,客户端的登出仅仅是过期当前用户与客户 ...

  6. Mybatis 学习记录 续

    项目结构如下: 1.数据库建表 表名:user 结构: 内容: 2.pom.xml文件更新如下: 注:其中build部分尤其需要重视 <?xml version="1.0" ...

  7. 搭服务器之kvm--vnc连接虚拟机连接闪退直接消失 以及virsh shutdown命令无效解决办法。

    之前暑期见识到了虚拟化在企业中的应用,感慨不小,以前只是自己在玩儿桌面vmware workstation,安装的虚拟机也没啥大感觉.在公司机房里大家用的dell poweredge 420,8gme ...

  8. golang中time包日期时间常用用法

    package main import ( "fmt" "reflect" "time" ) var week time.Duration ...

  9. java接口概述及特点

    1 package face_09; 2 3 4 5 6 abstract class AbsDemo{ 7 abstract void show1(); 8 abstract void show2( ...

  10. SNAT技术

    前面在讲解 firewall-config 工具的功能时,曾经提到了 SNAT(Source Network Address Translation,源网络地址转换)技术.SNAT 是一种为了解决 I ...