【LeetCode】638. Shopping Offers 解题报告(Python & C++)
作者: 负雪明烛
id: fuxuemingzhu
个人博客: http://fuxuemingzhu.cn/
题目地址:https://leetcode.com/problems/shopping-offers/description/
题目描述
In LeetCode Store, there are some kinds of items to sell. Each item has a price.
However, there are some special offers, and a special offer consists of one or more different kinds of items with a sale price.
You are given the each item’s price, a set of special offers, and the number we need to buy for each item. The job is to output the lowest price you have to pay for exactly certain items as given, where you could make optimal use of the special offers.
Each special offer is represented in the form of an array, the last number represents the price you need to pay for this special offer, other numbers represents how many specific items you could get if you buy this offer.
You could use any of special offers as many times as you want.
Example 1:
Input: [2,5], [[3,0,5],[1,2,10]], [3,2]
Output: 14
Explanation:
There are two kinds of items, A and B. Their prices are $2 and $5 respectively.
In special offer 1, you can pay $5 for 3A and 0B
In special offer 2, you can pay $10 for 1A and 2B.
You need to buy 3A and 2B, so you may pay $10 for 1A and 2B (special offer #2), and $4 for 2A.
Example 2:
Input: [2,3,4], [[1,1,0,4],[2,2,1,9]], [1,2,1]
Output: 11
Explanation:
The price of A is $2, and $3 for B, $4 for C.
You may pay $4 for 1A and 1B, and $9 for 2A ,2B and 1C.
You need to buy 1A ,2B and 1C, so you may pay $4 for 1A and 1B (special offer #1), and $3 for 1B, $4 for 1C.
You cannot add more items, though only $9 for 2A ,2B and 1C.
Note:
- There are at most 6 kinds of items, 100 special offers.
- For each item, you need to buy at most 6 of them.
- You are not allowed to buy more items than you want, even if that would lower the overall price.
题目大意
可以直接按照原价price购买商品,也可以用一些套餐。套餐的价格用special给出,用户的需求用needs给出。求问怎么组合才能最便宜。
解题方法
DFS
明显是DP的题目,但DFS没超时的话可以使用DFS解。
我们定义DFS返回的是对于当前的needs需要付出的最小价格。
因为这个题允许多次使用同一个套餐,所以这次dfs不需要像permutation一样记录位置,只需要保留我们如果直接购买或者套餐之后,剩余的商品数目即可。
dfs的做法是这样:求出直接购买这些商品的价格,然后遍历所有的套餐,看能不能使用这个套餐(判断的方式是使用套餐之后仍然还有剩余物品),保存所有情况下的最小值返回即可。
这种做法在remains全部是0的情况下,也会做一次遍历。但是注意不能改成min(remains) > 0的情况下才去继续遍历,因为有一个needs已经为0了的情况下,我们还要确保其他的needs都是0才可以。
我在写下面这个代码的时候,犯了一个大错:计算local_min的时候写成了local_min = min(local_min, spec[-1]) + self.dfs(price, special, remains)
,这个错误不可饶恕啊!!
代码如下:
class Solution(object):
def shoppingOffers(self, price, special, needs):
"""
:type price: List[int]
:type special: List[List[int]]
:type needs: List[int]
:rtype: int
"""
return self.dfs(price, special, needs)
def dfs(self, price, special, needs):
local_min = self.directPurchase(price, needs)
for spec in special:
remains = [needs[j] - spec[j] for j in range(len(needs))]
if min(remains) >= 0:
local_min = min(local_min, spec[-1] + self.dfs(price, special, remains))
return local_min
def directPurchase(self, price, needs):
total = 0
for i, need in enumerate(needs):
total += price[i] * need
return total
使用记忆化搜索可以加速计算,代码如下:
class Solution(object):
def shoppingOffers(self, price, special, needs):
"""
:type price: List[int]
:type special: List[List[int]]
:type needs: List[int]
:rtype: int
"""
return self.dfs(price, special, needs, {})
def dfs(self, price, special, needs, d):
val = sum(price[i] * needs[i] for i in range(len(needs)))
for spec in special:
remains = [needs[j] - spec[j] for j in range(len(needs))]
if min(remains) >= 0:
val = min(val, d.get(tuple(needs), spec[-1] + self.dfs(price, special, remains, d)))
d[tuple(needs)] = val
return val
其实不用定义一个新的函数dfs(),因为我们可以看出dfs的参数和原函数一样的,所以直接用原函数进行递归更方便。
class Solution(object):
def shoppingOffers(self, price, special, needs):
"""
:type price: List[int]
:type special: List[List[int]]
:type needs: List[int]
:rtype: int
"""
N = len(needs)
res = sum(p * n for p, n in zip(price, needs))
for sp in special:
if all(sp[i] <= needs[i] for i in range(N)):
remain = [needs[i] - sp[i] for i in range(N)]
if min(remain) >= 0:
res = min(res, sp[-1] + self.shoppingOffers(price, special, remain))
return res
回溯法
使用回溯法也能解决这个问题,使用了一个套餐之后,再进行回溯,看求得的结果是不是能更便宜。定义的helper函数就是用来计算在还有剩余needs的情况下的最小值。
class Solution {
public:
int shoppingOffers(vector<int>& price, vector<vector<int>>& special, vector<int>& needs) {
return helper(price, special, needs, 0);
}
int helper(vector<int>& price, vector<vector<int>>& special, vector<int>& needs, int start) {
const int N = price.size();
int ans = 0;
for (int i = 0; i < N; i++) {
ans += price[i] * needs[i];
}
for (int i = start; i < special.size(); i++) {
auto offer = special[i];
int total = offer.back();
for (int j = 0; j < N; j ++) {
needs[j] -= offer[j];
}
if (*min_element(needs.begin(), needs.end()) >= 0) {
total += helper(price, special, needs, i);
ans = min(total, ans);
}
for (int j = 0; j < N; j++) {
needs[j] += offer[j];
}
}
return ans;
}
};
参考资料:
https://leetcode.com/problems/shopping-offers/discuss/105212/Very-Easy-to-understand-JAVA-Solution-beats-95-with-explanation
https://leetcode.com/problems/shopping-offers/discuss/105204/Python-dfs-with-memorization.
日期
2018 年 9 月 7 日 —— 中午不睡,下午崩溃
2019 年 3 月 23 日 —— 今天也是元气满满的一天!
【LeetCode】638. Shopping Offers 解题报告(Python & C++)的更多相关文章
- LeetCode 638 Shopping Offers
题目链接: LeetCode 638 Shopping Offers 题解 dynamic programing 需要用到进制转换来表示状态,或者可以直接用一个vector来保存状态. 代码 1.未优 ...
- 【LeetCode】120. Triangle 解题报告(Python)
[LeetCode]120. Triangle 解题报告(Python) 作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 题目地址htt ...
- Week 9 - 638.Shopping Offers - Medium
638.Shopping Offers - Medium In LeetCode Store, there are some kinds of items to sell. Each item has ...
- LeetCode 1 Two Sum 解题报告
LeetCode 1 Two Sum 解题报告 偶然间听见leetcode这个平台,这里面题量也不是很多200多题,打算平时有空在研究生期间就刷完,跟跟多的练习算法的人进行交流思想,一定的ACM算法积 ...
- 【LeetCode】Permutations II 解题报告
[题目] Given a collection of numbers that might contain duplicates, return all possible unique permuta ...
- 【LeetCode】Island Perimeter 解题报告
[LeetCode]Island Perimeter 解题报告 [LeetCode] https://leetcode.com/problems/island-perimeter/ Total Acc ...
- 【LeetCode】01 Matrix 解题报告
[LeetCode]01 Matrix 解题报告 标签(空格分隔): LeetCode 题目地址:https://leetcode.com/problems/01-matrix/#/descripti ...
- 【LeetCode】Largest Number 解题报告
[LeetCode]Largest Number 解题报告 标签(空格分隔): LeetCode 题目地址:https://leetcode.com/problems/largest-number/# ...
- 【LeetCode】Gas Station 解题报告
[LeetCode]Gas Station 解题报告 标签(空格分隔): LeetCode 题目地址:https://leetcode.com/problems/gas-station/#/descr ...
随机推荐
- URI和URL的区别(转)
转载:http://www.cnblogs.com/gaojing/archive/2012/02/04/2413626.html 这两天在写代码的时候,由于涉及到资源的位置,因此,需要在Java B ...
- 68-Binary Tree Postorder Traversal
Binary Tree Postorder Traversal My Submissions QuestionEditorial Solution Total Accepted: 97358 Tota ...
- 数据分析体系 — 用户粘性的两个计算指标(DAU/MAU和月人均活跃天数)
很多运营都了解DAU(日活跃用户数)和MAU(月活跃用户数)的重要性,但在某些情况下这两个数值本身并不能反映出太多问题,这个时候就要引用到[DAU/MAU]的概念,即[日活/月活] 用户粘性的两个计算 ...
- (转载) IBM DB2数据库odbc配置步骤详解
[IT168 技术] 首先安装IBM DB2 odbc driver 1):可以单独下载DB2 Run-Time Client,大约(86.6m),安装后则odbc驱动程序安装成功.下载地址:ftp: ...
- Leetcode中的SQL题目练习(二)
175. Combine Two Tables https://leetcode.com/problems/combine-two-tables/description/ Description Pe ...
- 【区间dp】- P1880 [NOI1995] 石子合并
记录一下第一道ac的区间dp 题目:P1880 [NOI1995] 石子合并 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 代码: #include <iostream> ...
- Shell学习(三)——Shell条件控制和循环语句
参考博客: [1]Shell脚本的条件控制和循环语句 一.条件控制语句 1.if语句 1.1语法格式: if [ expression ] then Statement(s) to be execut ...
- Redis的持久化机制:RDB和AOF
什么是Redis持久化? Redis作为一个键值对内存数据库(NoSQL),数据都存储在内存当中,在处理客户端请求时,所有操作都在内存当中进行,如下所示: 这样做有什么问题呢? 其实,只要稍微有点计算 ...
- fastJson序列化
在pojo实体中有map<String,Object>的属性,有个key是user它存储在数据库中是用户的id数组,而在aop里会对这个属性做用户详细信息查询并重新put给user.在做J ...
- Docker 安装 Oracle12c
为选定需要pull到系统中的数据库镜像 # docker pull sath89/oracle-12c --------sath89/oracle-12c为选定需要pull到系统中的数据库镜像 doc ...