作者: 负雪明烛
id: fuxuemingzhu
个人博客: http://fuxuemingzhu.cn/


题目地址:https://leetcode.com/problems/shopping-offers/description/

题目描述

In LeetCode Store, there are some kinds of items to sell. Each item has a price.

However, there are some special offers, and a special offer consists of one or more different kinds of items with a sale price.

You are given the each item’s price, a set of special offers, and the number we need to buy for each item. The job is to output the lowest price you have to pay for exactly certain items as given, where you could make optimal use of the special offers.

Each special offer is represented in the form of an array, the last number represents the price you need to pay for this special offer, other numbers represents how many specific items you could get if you buy this offer.

You could use any of special offers as many times as you want.

Example 1:

Input: [2,5], [[3,0,5],[1,2,10]], [3,2]
Output: 14
Explanation:
There are two kinds of items, A and B. Their prices are $2 and $5 respectively.
In special offer 1, you can pay $5 for 3A and 0B
In special offer 2, you can pay $10 for 1A and 2B.
You need to buy 3A and 2B, so you may pay $10 for 1A and 2B (special offer #2), and $4 for 2A.

Example 2:

Input: [2,3,4], [[1,1,0,4],[2,2,1,9]], [1,2,1]
Output: 11
Explanation:
The price of A is $2, and $3 for B, $4 for C.
You may pay $4 for 1A and 1B, and $9 for 2A ,2B and 1C.
You need to buy 1A ,2B and 1C, so you may pay $4 for 1A and 1B (special offer #1), and $3 for 1B, $4 for 1C.
You cannot add more items, though only $9 for 2A ,2B and 1C.

Note:

  1. There are at most 6 kinds of items, 100 special offers.
  2. For each item, you need to buy at most 6 of them.
  3. You are not allowed to buy more items than you want, even if that would lower the overall price.

题目大意

可以直接按照原价price购买商品,也可以用一些套餐。套餐的价格用special给出,用户的需求用needs给出。求问怎么组合才能最便宜。

解题方法

DFS

明显是DP的题目,但DFS没超时的话可以使用DFS解。

我们定义DFS返回的是对于当前的needs需要付出的最小价格。

因为这个题允许多次使用同一个套餐,所以这次dfs不需要像permutation一样记录位置,只需要保留我们如果直接购买或者套餐之后,剩余的商品数目即可。

dfs的做法是这样:求出直接购买这些商品的价格,然后遍历所有的套餐,看能不能使用这个套餐(判断的方式是使用套餐之后仍然还有剩余物品),保存所有情况下的最小值返回即可。

这种做法在remains全部是0的情况下,也会做一次遍历。但是注意不能改成min(remains) > 0的情况下才去继续遍历,因为有一个needs已经为0了的情况下,我们还要确保其他的needs都是0才可以。

我在写下面这个代码的时候,犯了一个大错:计算local_min的时候写成了local_min = min(local_min, spec[-1]) + self.dfs(price, special, remains),这个错误不可饶恕啊!!

代码如下:

class Solution(object):
def shoppingOffers(self, price, special, needs):
"""
:type price: List[int]
:type special: List[List[int]]
:type needs: List[int]
:rtype: int
"""
return self.dfs(price, special, needs) def dfs(self, price, special, needs):
local_min = self.directPurchase(price, needs)
for spec in special:
remains = [needs[j] - spec[j] for j in range(len(needs))]
if min(remains) >= 0:
local_min = min(local_min, spec[-1] + self.dfs(price, special, remains))
return local_min def directPurchase(self, price, needs):
total = 0
for i, need in enumerate(needs):
total += price[i] * need
return total

使用记忆化搜索可以加速计算,代码如下:

class Solution(object):
def shoppingOffers(self, price, special, needs):
"""
:type price: List[int]
:type special: List[List[int]]
:type needs: List[int]
:rtype: int
"""
return self.dfs(price, special, needs, {}) def dfs(self, price, special, needs, d):
val = sum(price[i] * needs[i] for i in range(len(needs)))
for spec in special:
remains = [needs[j] - spec[j] for j in range(len(needs))]
if min(remains) >= 0:
val = min(val, d.get(tuple(needs), spec[-1] + self.dfs(price, special, remains, d)))
d[tuple(needs)] = val
return val

其实不用定义一个新的函数dfs(),因为我们可以看出dfs的参数和原函数一样的,所以直接用原函数进行递归更方便。

class Solution(object):
def shoppingOffers(self, price, special, needs):
"""
:type price: List[int]
:type special: List[List[int]]
:type needs: List[int]
:rtype: int
"""
N = len(needs)
res = sum(p * n for p, n in zip(price, needs))
for sp in special:
if all(sp[i] <= needs[i] for i in range(N)):
remain = [needs[i] - sp[i] for i in range(N)]
if min(remain) >= 0:
res = min(res, sp[-1] + self.shoppingOffers(price, special, remain))
return res

回溯法

使用回溯法也能解决这个问题,使用了一个套餐之后,再进行回溯,看求得的结果是不是能更便宜。定义的helper函数就是用来计算在还有剩余needs的情况下的最小值。

class Solution {
public:
int shoppingOffers(vector<int>& price, vector<vector<int>>& special, vector<int>& needs) {
return helper(price, special, needs, 0);
}
int helper(vector<int>& price, vector<vector<int>>& special, vector<int>& needs, int start) {
const int N = price.size();
int ans = 0;
for (int i = 0; i < N; i++) {
ans += price[i] * needs[i];
}
for (int i = start; i < special.size(); i++) {
auto offer = special[i];
int total = offer.back();
for (int j = 0; j < N; j ++) {
needs[j] -= offer[j];
}
if (*min_element(needs.begin(), needs.end()) >= 0) {
total += helper(price, special, needs, i);
ans = min(total, ans);
}
for (int j = 0; j < N; j++) {
needs[j] += offer[j];
}
}
return ans;
}
};

参考资料:

https://leetcode.com/problems/shopping-offers/discuss/105212/Very-Easy-to-understand-JAVA-Solution-beats-95-with-explanation
https://leetcode.com/problems/shopping-offers/discuss/105204/Python-dfs-with-memorization.

日期

2018 年 9 月 7 日 —— 中午不睡,下午崩溃
2019 年 3 月 23 日 —— 今天也是元气满满的一天!

【LeetCode】638. Shopping Offers 解题报告(Python & C++)的更多相关文章

  1. LeetCode 638 Shopping Offers

    题目链接: LeetCode 638 Shopping Offers 题解 dynamic programing 需要用到进制转换来表示状态,或者可以直接用一个vector来保存状态. 代码 1.未优 ...

  2. 【LeetCode】120. Triangle 解题报告(Python)

    [LeetCode]120. Triangle 解题报告(Python) 作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 题目地址htt ...

  3. Week 9 - 638.Shopping Offers - Medium

    638.Shopping Offers - Medium In LeetCode Store, there are some kinds of items to sell. Each item has ...

  4. LeetCode 1 Two Sum 解题报告

    LeetCode 1 Two Sum 解题报告 偶然间听见leetcode这个平台,这里面题量也不是很多200多题,打算平时有空在研究生期间就刷完,跟跟多的练习算法的人进行交流思想,一定的ACM算法积 ...

  5. 【LeetCode】Permutations II 解题报告

    [题目] Given a collection of numbers that might contain duplicates, return all possible unique permuta ...

  6. 【LeetCode】Island Perimeter 解题报告

    [LeetCode]Island Perimeter 解题报告 [LeetCode] https://leetcode.com/problems/island-perimeter/ Total Acc ...

  7. 【LeetCode】01 Matrix 解题报告

    [LeetCode]01 Matrix 解题报告 标签(空格分隔): LeetCode 题目地址:https://leetcode.com/problems/01-matrix/#/descripti ...

  8. 【LeetCode】Largest Number 解题报告

    [LeetCode]Largest Number 解题报告 标签(空格分隔): LeetCode 题目地址:https://leetcode.com/problems/largest-number/# ...

  9. 【LeetCode】Gas Station 解题报告

    [LeetCode]Gas Station 解题报告 标签(空格分隔): LeetCode 题目地址:https://leetcode.com/problems/gas-station/#/descr ...

随机推荐

  1. 65-Binary Tree Zigzag Level Order Traversal

    Binary Tree Zigzag Level Order Traversal My Submissions QuestionEditorial Solution Total Accepted: 6 ...

  2. MicrosoftPowerBI—2019-nCov 新型冠状病毒肺炎多功能动态看板

    https://app.powerbi.cn/view?r=eyJrIjoiNmE0ZDU0MGItOTFjYy00MWYyLWFmZjMtMThkM2EwMzg5YjgyIiwidCI6ImQxNj ...

  3. 前后端分离进阶一:使用ElementUI+前端分页

    前两篇入门:前后端分离初体验一:前端环境搭建 前后端分离初体验二:后端环境搭建+数据交互 参考:https://www.bilibili.com/video/BV137411B7vB B站UP:楠哥教 ...

  4. SpringBoot整合Shiro 二:Shiro配置类

    环境搭建见上篇:SpringBoot整合Shiro 一:搭建环境 Shiro配置类配置 shiro的配置主要集中在 ShiroFilterFactoryBean 中 关于权限: anon:无需认证就可 ...

  5. linux下定位异常消耗的线程实战分析

    前言: 之前分享过一篇Linux开发coredump文件分析实战分享 ,今天再来分享一篇实战文章. 在我们嵌入式linux开发过程中,开发过程中我们经常会使用多进程.多线程开发.那么多线程使用过程中, ...

  6. javaSE高级篇3 — 网络编程 — 更新完毕

    网络编程基础知识 先来思考两个问题( 在这里先不解决 ) 如何准确的找到一台 或 多台主机? 找到之后如何进行通讯? 网络编程中的几个要素 IP 和 端口号 网络通讯协议:TCP / UDP 最后一句 ...

  7. mysql-centos8下安装

    参考文章 1.下载安装包 客服端与服务端 依赖包 2.linux下检查是否安装 rpm -qa | grep -i mysql 安装过会显示软件名称,没安装过就是空的 3.安装包传到虚拟机 先需要把安 ...

  8. Sharding-JDBC 实现水平分库分表

    1.需求分析

  9. FileReader (三) - 网页拖拽并预显示图片简单实现

    以下是一个很贱很简单的一个 在网页上图拽图片并预显示的demo. 我是从https://developer.mozilla.org/en-US/docs/Web/API/FileReader#Stat ...

  10. App内容分享

    1.发送文本内容 发送简单的数据到其他应用,比如社交分分享的内容,意图允许用户快速而方便的共享信息. //分享简单的文本内容 public void btnShareText(View view) { ...