1.创建DirectByteBuffer

  Direct ByteBuffer是通过JNI在Java虚拟机外的内存中分配了一块(所以即使在运行时通过-Xmx指定了Java虚拟机的最大堆内存,还是可能实例化超出该大小的Direct ByteBuffer),该内存块并不直接由Java虚拟机负责垃圾收集.

使用allocateDirect()静态方法创建对象分配内存

  ByteBuffer buffer=ByteBuffer.allocateDirect(256);

 1 /**
2 * Allocates a new direct byte buffer.
3 *
4 * <p> The new buffer's position will be zero, its limit will be its
5 * capacity, its mark will be undefined, and each of its elements will be
6 * initialized to zero. Whether or not it has a
7 * {@link #hasArray </code>backing array<code>} is unspecified.
8 *
9 * @param capacity The new buffer's capacity, in bytes
10 * @return The new byte buffer
11 * @throws IllegalArgumentException If the <tt>capacity</tt> is a negative integer
12 */
13 public static ByteBuffer allocateDirect(int capacity) {
14 if (capacity < 0) {
15 throw new IllegalArgumentException("capacity < 0: " + capacity);
16 }
17
18 DirectByteBuffer.MemoryRef memoryRef = new DirectByteBuffer.MemoryRef(capacity);
19 return new DirectByteBuffer(capacity, memoryRef);
20 }
21 //
22 public MemoryRef(int capacity) {
23 VMRuntime runtime = VMRuntime.getRuntime();
24 buffer = (byte[]) runtime.newNonMovableArray(byte.class, capacity + 7);
25 allocatedAddress = runtime.addressOf(buffer);
26 // Offset is set to handle the alignment: http://b/16449607
27 offset = (int) (((allocatedAddress + 7) & ~(long) 7) - allocatedAddress);
28 isAccessible = true;
29 isFreed = false;
30 }

  以上方法将创建一个容量为256字节的DirectByteBuffer,如果发现创建的缓冲区容量太小,唯一的选择就是重新创建一个大小合适的缓冲区.

DirectByteBuffer主要应用在android数据传递过程.减少数据与JNI数据拷贝转换操作

DirectByteBuffer.putInt(value);
下面分析一下当执行putInt后,DirectByteBuffer都执行了什么操作
 1     //计算写数据的位置
2 @Override
3 public final ByteBuffer putInt(int x) {
4 if (!memoryRef.isAccessible) {
5 throw new IllegalStateException("buffer is inaccessible");
6 }
7 if (isReadOnly) {
8 throw new ReadOnlyBufferException();
9 }
10 putInt(ix(nextPutIndex(SizeOf.INT)), x);
11 return this;
12 }
13 //调用Memory来完成Int数据存储
14 private ByteBuffer putInt(long a, int x) {
15 Memory.pokeInt(a, x, !nativeByteOrder);
16 return this;
17 }
18
19 private long ix(int i) {
20 return address + i;
21 }
22

再往下看Memory做了什么

1 public static void pokeInt(long address, int value, boolean swap) {
2 if (swap) {
3 value = Integer.reverseBytes(value);
4 }
5 pokeIntNative(address, value);
6 }
7 //因为最后执行到JNI层.这块就不涉及到字节序的问题
8 private static native void pokeIntNative(long address, int value);

当执行 DirectByteBuffer.getInt();都执行了哪些操作

 1 public int getInt() {
2 if (!memoryRef.isAccessible) {
3 throw new IllegalStateException("buffer is inaccessible");
4 }
5 return getInt(ix(nextGetIndex(SizeOf.INT)));
6 }
7
8 //最后执行Memory 的JNI方法
9 private int getInt(long a) {
10 return Memory.peekInt(a, !nativeByteOrder);
11 }
12 //Memory 执行的操作
13 public static int peekInt(long address, boolean swap) {
14 int result = peekIntNative(address);
15 if (swap) {
16 result = Integer.reverseBytes(result);
17 }
18 return result;
19 }
20 private static native int peekIntNative(long address);

所以得出结论就本身在Java中引入DirectByteBuffer并不会提高性能

DirectByteBuffer实现原理分析的更多相关文章

  1. Java Reference核心原理分析

    本文转载自Java Reference核心原理分析 导语 带着问题,看源码针对性会更强一点.印象会更深刻.并且效果也会更好.所以我先卖个关子,提两个问题(没准下次跳槽时就被问到). 我们可以用Byte ...

  2. Handler系列之原理分析

    上一节我们讲解了Handler的基本使用方法,也是平时大家用到的最多的使用方式.那么本节让我们来学习一下Handler的工作原理吧!!! 我们知道Android中我们只能在ui线程(主线程)更新ui信 ...

  3. Java NIO使用及原理分析(1-4)(转)

    转载的原文章也找不到!从以下博客中找到http://blog.csdn.net/wuxianglong/article/details/6604817 转载自:李会军•宁静致远 最近由于工作关系要做一 ...

  4. 原子类java.util.concurrent.atomic.*原理分析

    原子类java.util.concurrent.atomic.*原理分析 在并发编程下,原子操作类的应用可以说是无处不在的.为解决线程安全的读写提供了很大的便利. 原子类保证原子的两个关键的点就是:可 ...

  5. Android中Input型输入设备驱动原理分析(一)

    转自:http://blog.csdn.net/eilianlau/article/details/6969361 话说Android中Event输入设备驱动原理分析还不如说Linux输入子系统呢,反 ...

  6. 转载:AbstractQueuedSynchronizer的介绍和原理分析

    简介 提供了一个基于FIFO队列,可以用于构建锁或者其他相关同步装置的基础框架.该同步器(以下简称同步器)利用了一个int来表示状态,期望它能够成为实现大部分同步需求的基础.使用的方法是继承,子类通过 ...

  7. Camel运行原理分析

    Camel运行原理分析 以一个简单的例子说明一下camel的运行原理,例子本身很简单,目的就是将一个目录下的文件搬运到另一个文件夹,处理器只是将文件(限于文本文件)的内容打印到控制台,首先代码如下: ...

  8. NOR Flash擦写和原理分析

    NOR Flash擦写和原理分析 1. NOR FLASH 的简单介绍 NOR FLASH 是很常见的一种存储芯片,数据掉电不会丢失.NOR FLASH支持Execute On Chip,即程序可以直 ...

  9. 使用AsyncTask异步更新UI界面及原理分析

    概述: AsyncTask是在Android SDK 1.5之后推出的一个方便编写后台线程与UI线程交互的辅助类.AsyncTask的内部实现是一个线程池,所有提交的异步任务都会在这个线程池中的工作线 ...

随机推荐

  1. 自定义 Word 模板

    自定义 Word 模板 目录 必要设置 样式设置 标题样式 多级列表 封面 正文 引用目录 页码 页眉 图标 自定义模板保存 样式导入和导出 批量删除多余空白段落 必要设置 显示所有格式标记 选择&q ...

  2. python爬虫之正则表达式(用在其他地方也可)

    1. 常用的匹配规则 ### 常用的匹配规则 # \w 匹配字母.数字及下划线 # \W 匹配不是字母.数字及下划线的字符 # \s 匹配任意空白字符,等价于[\t\n\t\f] # \S 匹配任意非 ...

  3. Python添加模块路径

    1.用函数临时添加 1 import sys #导入sys模块 2 3 4 sys.path.append(r'/tmp/test') #要用绝对路径 5 print(sys.path) #查看模块路 ...

  4. (转载)java排序实现

    Java实现几种常见排序方法 日常操作中常见的排序方法有:冒泡排序.快速排序.选择排序.插入排序.希尔排序,甚至还有基数排序.鸡尾酒排序.桶排序.鸽巢排序.归并排序等. 冒泡排序是一种简单的排序算法. ...

  5. FFmpeg笔记:使用MSVC工具链编译Windows版本静态库、动态库

    2019年3月开始,为了将音视频编解码功能集成到Cocos2d-x中,开始接触到FFmpeg: 当时开发环境还在Mac下,编译FFmpeg相比现在用Windows平台要方便的多: 最近,公司内部有个U ...

  6. Kubernetes-存储(一)

    前言 本篇是Kubernetes第十二篇,大家一定要把环境搭建起来,看是解决不了问题的,必须实战. Kubernetes系列文章: Kubernetes介绍 Kubernetes环境搭建 Kubern ...

  7. 2 — springboot的原理

    1.初步探索:第一个原理:依赖管理 发现:这里面存放着各种jar包 和 版本号 这也是:我们在前面第一个springboot项目创建中勾选了那个web,然后springboot就自动帮我们导入很多东西 ...

  8. 日常Java 2021/11/18

    用idea实现Javaweb登录页面 <%-- Created by IntelliJ IDEA. User: Tefuir Date: 2021/11/18 Time: 18:14 To ch ...

  9. Linux的小知识

    1. top 命令可以在Linux下查看任务管理器和当前进程使用资源情况. 2. Ctrl+c 即可退出,然后使用 kill+进程号 命令可杀死指定进程 3.在Linux的 /etc/rc.local ...

  10. 【swift】Xcode未响应(卡死、卡住、CPU满载、忙碌、转圈圈)

    在尝试了网上的方法,依然没能解决问题,尝试如下: 1.去自己项目的路径,找到<你的项目名.xcodeproj>,点击[显示包内容],删除xcuserdata文件夹 2.去Library,把 ...