JAVA在JDK1.8中Stream流的使用
Stream流的map使用
转换大写
List<String> list3 = Arrays.asList("zhangSan", "liSi", "wangWu");
System.out.println("转换之前的数据:" + list3);
List<String> list4 = list3.stream().map(String::toUpperCase).collect(Collectors.toList());
System.out.println("转换之后的数据:" + list4);
// 转换之后的数据:[ZHANGSAN, LISI,WANGWU]
转换数据类型
List<String> list31 = Arrays.asList("1", "2", "3");
System.out.println("转换之前的数据:" + list31);
List<Integer> list41 = list31.stream().map(Integer::valueOf).collect(Collectors.toList());
System.out.println("转换之后的数据:" + list41);
// [1, 2, 3]
获取平方
List<Integer> list5 = Arrays.asList(new Integer[] { 1, 2, 3, 4, 5 });
List<Integer> list6 = list5.stream().map(n -> n * n).collect(Collectors.toList());
System.out.println("平方的数据:" + list6);
// [1, 4, 9, 16, 25]
Stream流的filter使用 用于通过设置的条件过滤出元素
通过与 findAny 得到 if/else 的值
List<String> list = Arrays.asList("张三", "李四", "王五", "xuwujing");
String result3 = list.stream().filter(str -> "李四".equals(str)).findAny().orElse("找不到!");
String result4 = list.stream().filter(str -> "李二".equals(str)).findAny().orElse("找不到!");
System.out.println("stream 过滤之后 2:" + result3);
System.out.println("stream 过滤之后 3:" + result4);
//stream 过滤之后 2:李四
//stream 过滤之后 3:找不到!
通过与 mapToInt 计算和
List<User> lists = new ArrayList<User>();
lists.add(new User(6, "张三"));
lists.add(new User(2, "李四"));
lists.add(new User(3, "王五"));
lists.add(new User(1, "张三"));
// 计算这个list中出现 "张三" id的值
int sum = lists.stream().filter(u -> "张三".equals(u.getName())).mapToInt(u -> u.getId()).sum(); System.out.println("计算结果:" + sum);
// 7
Stream流的flatMap使用 用于映射每个元素到对应的结果,一对多。
从句子中得到单词
String worlds = "The way of the future";
List<String> list7 = new ArrayList<>();
list7.add(worlds);
List<String> list8 = list7.stream().flatMap(str -> Stream.of(str.split(" ")))
.filter(world -> world.length() > 0).collect(Collectors.toList());
System.out.println("单词:");
list8.forEach(System.out::println);
// 单词:
// The
// way
// of
// the
// future
Stream流的limit使用 用于获取指定数量的流
获取前n条数的数据
Random rd = new Random();
System.out.println("取到的前三条数据:");
rd.ints().limit(3).forEach(System.out::println);
// 取到的前三条数据:
// 1167267754
// -1164558977
// 1977868798
结合skip使用得到需要的数据
skip表示的是扔掉前n个元素。
List<User> list9 = new ArrayList<User>();
for (int i = 1; i < 4; i++) {
User user = new User(i, "pancm" + i);
list9.add(user);
}
System.out.println("截取之前的数据:");
// 取前3条数据,但是扔掉了前面的2条,可以理解为拿到的数据为 2<=i<3 (i 是数值下标)
List<String> list10 = list9.stream().map(User::getName).limit(3).skip(2).collect(Collectors.toList());
System.out.println("截取之后的数据:" + list10);
// 截取之前的数据:
// 姓名:pancm1
// 姓名:pancm2
// 姓名:pancm3
// 截取之后的数据:[pancm3]
Stream流的sort使用
Random rd2 = new Random();
System.out.println("取到的前三条数据然后进行排序:");
rd2.ints().limit(3).sorted().forEach(System.out::println);
// 取到的前三条数据然后进行排序:
// -2043456377
// -1778595703
// 1013369565
优化排序
//普通的排序取值
List<User> list11 = list9.stream().sorted((u1, u2) -> u1.getName().compareTo(u2.getName())).limit(3)
.collect(Collectors.toList());
System.out.println("排序之后的数据:" + list11);
//优化排序取值
List<User> list12 = list9.stream().limit(3).sorted((u1, u2) -> u1.getName().compareTo(u2.getName()))
.collect(Collectors.toList());
System.out.println("优化排序之后的数据:" + list12);
//排序之后的数据:[{"id":1,"name":"pancm1"}, {"id":2,"name":"pancm2"}, {"id":3,"name":"pancm3"}]
//优化排序之后的数据:[{"id":1,"name":"pancm1"}, {"id":2,"name":"pancm2"}, {"id":3,"name":"pancm3"}]
Stream流的max/min/distinct使用
得到最大最小值
List<String> list13 = Arrays.asList("zhangsan","lisi","wangwu","xuwujing");
int maxLines = list13.stream().mapToInt(String::length).max().getAsInt();
int minLines = list13.stream().mapToInt(String::length).min().getAsInt();
System.out.println("最长字符的长度:" + maxLines+",最短字符的长度:"+minLines);
//最长字符的长度:8,最短字符的长度:4
得到去重之后的数据
String lines = "good good study day day up";
List<String> list14 = new ArrayList<String>();
list14.add(lines);
List<String> words = list14.stream().flatMap(line -> Stream.of(line.split(" "))).filter(word -> word.length() > 0)
.map(String::toLowerCase).distinct().sorted().collect(Collectors.toList());
System.out.println("去重复之后:" + words);
//去重复之后:[day, good, study, up]
Stream流的Match使用
- allMatch:Stream 中全部元素符合则返回 true ;
- anyMatch:Stream 中只要有一个元素符合则返回 true;
- noneMatch:Stream 中没有一个元素符合则返回 true。
数据是否符合
boolean all = lists.stream().allMatch(u -> u.getId() > 3);
System.out.println("是否都大于3:" + all);
boolean any = lists.stream().anyMatch(u -> u.getId() > 3);
System.out.println("是否有一个大于3:" + any);
boolean none = lists.stream().noneMatch(u -> u.getId() > 3);
System.out.println("是否没有一个大于3的:" + none);
// 是否都大于3:false
// 是否有一个大于3:true
// 是否没有一个大于3的:false
Stream流的reduce使用 主要作用是把 Stream 元素组合起来进行操作。
字符串连接
String concat = Stream.of("A", "B", "C", "D").reduce("", String::concat);
System.out.println("字符串拼接:" + concat);
得到最小值
double minValue = Stream.of(-4.0, 1.0, 3.0, -2.0).reduce(Double.MAX_VALUE, Double::min);
System.out.println("最小值:" + minValue);
//最小值:-4.0
求和
// 求和, 无起始值
int sumValue = Stream.of(1, 2, 3, 4).reduce(Integer::sum).get();
System.out.println("有无起始值求和:" + sumValue);
// 求和, 有起始值
sumValue = Stream.of(1, 2, 3, 4).reduce(1, Integer::sum);
System.out.println("有起始值求和:" + sumValue);
// 有无起始值求和:10
// 有起始值求和:11
过滤拼接
concat = Stream.of("a", "B", "c", "D", "e", "F").filter(x -> x.compareTo("Z") > 0).reduce("", String::concat);
System.out.println("过滤和字符串连接:" + concat);
//过滤和字符串连接:ace
Stream流的groupingBy/partitioningBy使用
- groupingBy:分组排序;
- partitioningBy:分区排序。
分组排序
System.out.println("通过id进行分组排序:");
Map<Integer, List<User>> personGroups = Stream.generate(new UserSupplier2()).limit(5)
.collect(Collectors.groupingBy(User::getId));
Iterator it = personGroups.entrySet().iterator();
while (it.hasNext()) {
Map.Entry<Integer, List<User>> persons = (Map.Entry) it.next();
System.out.println("id " + persons.getKey() + " = " + persons.getValue());
}
// 通过id进行分组排序:
// id 10 = [{"id":10,"name":"pancm1"}]
// id 11 = [{"id":11,"name":"pancm3"}, {"id":11,"name":"pancm6"}, {"id":11,"name":"pancm4"}, {"id":11,"name":"pancm7"}]
class UserSupplier2 implements Supplier<User> {
private int index = 10;
private Random random = new Random();
@Override
public User get() {
return new User(index % 2 == 0 ? index++ : index, "pancm" + random.nextInt(10));
}
}
分区排序
System.out.println("通过年龄进行分区排序:");
Map<Boolean, List<User>> children = Stream.generate(new UserSupplier3()).limit(5)
.collect(Collectors.partitioningBy(p -> p.getId() < 18));
System.out.println("小孩: " + children.get(true));
System.out.println("成年人: " + children.get(false));
// 通过年龄进行分区排序:
// 小孩: [{"id":16,"name":"pancm7"}, {"id":17,"name":"pancm2"}]
// 成年人: [{"id":18,"name":"pancm4"}, {"id":19,"name":"pancm9"}, {"id":20,"name":"pancm6"}]
class UserSupplier3 implements Supplier<User> {
private int index = 16;
private Random random = new Random();
@Override
public User get() {
return new User(index++, "pancm" + random.nextInt(10));
}
}
Stream流的summaryStatistics使用 IntSummaryStatistics 用于收集统计信息(如count、min、max、sum和average)的状态对象。
得到最大、最小、之和以及平均数。
List<Integer> numbers = Arrays.asList(1, 5, 7, 3, 9);
IntSummaryStatistics stats = numbers.stream().mapToInt((x) -> x).summaryStatistics(); System.out.println("列表中最大的数 : " + stats.getMax());
System.out.println("列表中最小的数 : " + stats.getMin());
System.out.println("所有数之和 : " + stats.getSum());
System.out.println("平均数 : " + stats.getAverage()); // 列表中最大的数 : 9
// 列表中最小的数 : 1
// 所有数之和 : 25
// 平均数 : 5.0
JAVA在JDK1.8中Stream流的使用的更多相关文章
- Java 8 新特性之 Stream 流基础体验
Java 8 新特性之 Stream 流基础体验 package com.company; import java.util.ArrayList; import java.util.List; imp ...
- JDK 8 中Stream流中的去重的方法
JDK 8 中Stream流中去重的方法 1.简单的去重,可以使用distinct()方法去重,该方法是通过比较equals和hashcode值去去重, 2.复杂的去重, 例如,在一个JavaBean ...
- 【JDK8】JDK 8 中Stream流中的去重的方法
JDK 8 中Stream流中去重的方法 1.简单的去重,可以使用distinct()方法去重,该方法是通过比较equals和hashcode值去去重, 2.复杂的去重, 例如,在一个JavaBean ...
- Jdk8中Stream流的使用,让你脱离for循环
学习要求: 知道一点儿函数式接口和Lambda表达式的基础知识,有利于更好的学习. 1.先体验一下Stream的好处 需求:给你一个ArrayList用来保存学生的成绩,让你打印出其中大于60的成绩. ...
- node.js中stream流中可读流和可写流的使用
node.js中的流 stream 是处理流式数据的抽象接口.node.js 提供了很多流对象,像http中的request和response,和 process.stdout 都是流的实例. 流可以 ...
- 理解 Node.js 中 Stream(流)
Stream(流) 是 Node.js 中处理流式数据的抽象接口. stream 模块用于构建实现了流接口的对象. Node.js 提供了多种流对象. 例如,对 HTTP 服务器的request请求和 ...
- java基础第11期——Stream流、方法引用、junit单元测试
1.Stream流 Stream流与io流是不同的东西,用于解决集合类库已有的弊端, 1.1 获取Stream流: Collection集合的Stream方法,注意Map集合要经过转化 default ...
- java基础(10)---stream流
一.stream的应用场景 for遍历的冗余场景: stream的写法: 二.获取Stream流的常用方式 三.Stream的map映射方法 更简单的写法: 四.Stream的filter过滤方法 ...
- Java中Stream流相关介绍
什么是Stream? Stream是JDK8 API的新成员,它允许以声明性方式处理数据集合 特点 代码简洁: 函数式编程写出的代码简洁且意图明确,使用stream接口让你从此告别for循环 多核友好 ...
随机推荐
- Topcoder 10748 - StringDecryption(dp)
题面传送门 神仙题. 首先这个两次加密略微有点棘手,咱们不妨先从一次加密的情况入手考虑这个问题.显然,一次加密等价于将加密过的序列划分成若干段,每一段都是 \(xd\) 的形式表示这一段中有 \(x\ ...
- Atcoder Grand Contest 002 F - Leftmost Ball(dp)
Atcoder 题面传送门 & 洛谷题面传送门 这道 Cu 的 AGC F 竟然被我自己想出来了!!!((( 首先考虑什么样的序列会被统计入答案.稍微手玩几组数据即可发现,一个颜色序列 \(c ...
- js判断undefined nan等
1,js判断undefined 主要用typeof(),typeof的返回值有:undefined,object,boolean,number,string,symbol,function等, if( ...
- Python查找最长回文暴力方法
查找最长回文子串 给定一个字符串 s,找到 s 中最长的回文子串.你可以假设 s 的最大长度为1000. 例如1: 输入: "babad" 输出: "bab" ...
- (转载)Java生成和操作Excel文件
JAVA EXCEL API:是一开放源码项目,通过它Java开发人员可以读取Excel文件的内容.创建新的Excel文件.更新已经存在的Excel文件.使用该API非Windows操作系统也可以通过 ...
- C#gridview尾部统计
protected void gridSettlement_RowDataBound(object sender, GridViewRowEventArgs e) { if (dtSettlement ...
- Java中static关键字声明的静态内部类与非静态内部类的区别
(1)内部静态类不需要有指向外部类的引用.但非静态内部类需要持有对外部类的引用.(2)非静态内部类能够访问外部类的静态和非静态成员.静态类不能访问外部类的非静态成员.他只能访问外部类的静态成员.(3) ...
- JVM1 JVM与Java体系结构
目录 JVM与Java体系结构 虚拟机与Java虚拟机 虚拟机 Java虚拟机 JVM的位置 JVM的整体结构 Java代码执行流程 JVM的架构模型 基于栈的指令级架构 基于寄存器的指令级架构 两种 ...
- day07 ORM中常用字段和参数
day07 ORM中常用字段和参数 今日内容 常用字段 关联字段 测试环境准备 查询关键字 查看ORM内部SQL语句 神奇的双下划线查询 多表查询前提准备 常用字段 字段类型 AutoField in ...
- RocketMQ集群搭建方式
各角色介绍 Producer:消息的发送者:举例:发信者 Consumer:消息接收者:举例:收信者 Broker:暂存和传输消息:举例:邮局 NameServer:管理Broker:举例:各个邮局的 ...