Codeforces 题目传送门 & 洛谷题目传送门

事实上是一道非常容易的题

很容易想到如果 \(c_i\geq a_j\) 且 \(d_i\geq b_j\) 就连一条 \(i\to j\) 的边表示用完 \(i\) 之后可以用 \(j\)。然后跑 BFS。

直接跑复杂度是 \(n^2\),不过发现一个性质,那就是每个点最多被访问一次,故考虑用数据结构优化 BFS 的过程,具体来说,用树状数组套 set 维护所有 \((a_i,b_i)\) 的坐标,当访问到某个 \(j\) 时候就直接在树状数组套 set 上找出全部满足 \(a_i\leq c_j,b_i\leq d_j\) 的 \(i\) 并将其压入队列,并直接将这些点从 set 中删除。注意到每个点会恰好被删除一次,故总删除次数是线性的,再加上树状数组套 set 本身的 2log,复杂度 \(n\log^2n\)。

记得之前做过一道什么数据结构优化二分图染色的题来着的?这题思想似乎与那题差不多,都是利用每个点最多被访问一次这个性质,用数据结构优化暴力的过程(不过似乎这题比那题还容易一些)。

上帝不要惩罚我刷水题/kk

#include <bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define fill0(a) memset(a,0,sizeof(a))
#define fill1(a) memset(a,-1,sizeof(a))
#define fillbig(a) memset(a,63,sizeof(a))
#define pb push_back
#define ppb pop_back
#define mp make_pair
template<typename T1,typename T2> void chkmin(T1 &x,T2 y){if(x>y) x=y;}
template<typename T1,typename T2> void chkmax(T1 &x,T2 y){if(x<y) x=y;}
typedef pair<int,int> pii;
typedef long long ll;
namespace fastio{
#define FILE_SIZE 1<<23
char rbuf[FILE_SIZE],*p1=rbuf,*p2=rbuf,wbuf[FILE_SIZE],*p3=wbuf;
inline char getc(){return p1==p2&&(p2=(p1=rbuf)+fread(rbuf,1,FILE_SIZE,stdin),p1==p2)?-1:*p1++;}
inline void putc(char x){(*p3++=x);}
template<typename T> void read(T &x){
x=0;char c=getchar();T neg=0;
while(!isdigit(c)) neg|=!(c^'-'),c=getchar();
while(isdigit(c)) x=(x<<3)+(x<<1)+(c^48),c=getchar();
if(neg) x=(~x)+1;
}
template<typename T> void recursive_print(T x){if(!x) return;recursive_print(x/10);putc(x%10^48);}
template<typename T> void print(T x){if(!x) putc('0');if(x<0) putc('-'),x=~x+1;recursive_print(x);}
void print_final(){fwrite(wbuf,1,p3-wbuf,stdout);}
}
const int MAXN=1e5;
int n,a[MAXN+5],b[MAXN+5],c[MAXN+5],d[MAXN+5];
int key[MAXN*2+5],cnt=0,uni[MAXN*2+5],num=0;
set<pii> st[MAXN*2+5];
void insert(int x,int y,int z){
for(int i=x;i<=num;i+=(i&(-i))) st[i].insert(mp(y,z));
}
void del(int x,int y,int z){
for(int i=x;i<=num;i+=(i&(-i))) st[i].erase(st[i].find(mp(y,z)));
}
vector<int> query(int x,int y){
vector<int> ret;
for(int i=x;i;i&=(i-1)){
set<pii>::iterator t=st[i].lower_bound(mp(y+1,0));
for(set<pii>::iterator it=st[i].begin();it!=t;++it){
ret.pb(it->se);
}
} return ret;
}
int dis[MAXN+5],from[MAXN+5];
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++){
scanf("%d%d%d%d",&a[i],&b[i],&c[i],&d[i]);
key[++cnt]=a[i];key[++cnt]=c[i];
} key[++cnt]=0;sort(key+1,key+cnt+1);key[0]=-1;
for(int i=1;i<=cnt;i++) if(key[i]!=key[i-1]) uni[++num]=key[i];
for(int i=1;i<=n;i++){
a[i]=lower_bound(uni+1,uni+num+1,a[i])-uni;
c[i]=lower_bound(uni+1,uni+num+1,c[i])-uni;
}
for(int i=1;i<=n;i++) insert(a[i],b[i],i);
memset(dis,-1,sizeof(dis));queue<int> q;
vector<int> v=query(1,0);
for(int i=0;i<v.size();i++) dis[v[i]]=1,q.push(v[i]),del(a[v[i]],b[v[i]],v[i]);
while(!q.empty()){
int x=q.front();q.pop();v=query(c[x],d[x]);
for(int i=0;i<v.size();i++){
int t=v[i];dis[t]=dis[x]+1;from[t]=x;q.push(t),del(a[t],b[t],t);
}
}
if(dis[n]==-1) printf("-1\n");
else{
printf("%d\n",dis[n]);vector<int> v;
for(int i=n;i;i=from[i]) v.pb(i);
reverse(v.begin(),v.end());
for(int i=0;i<v.size();i++) printf("%d ",v[i]);
}
return 0;
}

Codeforces 605D - Board Game(树状数组套 set)的更多相关文章

  1. Codeforces 1139F Dish Shopping 树状数组套平衡树 || 平衡树

    Dish Shopping 将每个物品拆成p 和 s 再加上人排序. 然后问题就变成了, 对于一个线段(L - R), 问有多少个(li, ri)满足  L >= li && R ...

  2. Codeforces Round #404 (Div. 2) E. Anton and Permutation(树状数组套主席树 求出指定数的排名)

    E. Anton and Permutation time limit per test 4 seconds memory limit per test 512 megabytes input sta ...

  3. BZOJ 3196 Tyvj 1730 二逼平衡树 ——树状数组套主席树

    [题目分析] 听说是树套树.(雾) 怒写树状数组套主席树,然后就Rank1了.23333 单点修改,区间查询+k大数查询=树状数组套主席树. [代码] #include <cstdio> ...

  4. 【树状数组套权值线段树】bzoj1901 Zju2112 Dynamic Rankings

    谁再管这玩意叫树状数组套主席树我跟谁急 明明就是树状数组的每个结点维护一棵动态开结点的权值线段树而已 好吧,其实只有一个指针,指向该结点的权值线段树的当前结点 每次查询之前,要让指针指向根结点 不同结 ...

  5. BZOJ 1901 Zju2112 Dynamic Rankings ——树状数组套主席树

    [题目分析] BZOJ这个题目抄的挺霸气. 主席树是第一时间想到的,但是修改又很麻烦. 看了别人的题解,原来还是可以用均摊的思想,用树状数组套主席树. 学到了新的姿势,2333o(* ̄▽ ̄*)ブ [代 ...

  6. 【BZOJ-1452】Count 树状数组 套 树状数组

    1452: [JSOI2009]Count Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1769  Solved: 1059[Submit][Stat ...

  7. 【BZOJ】1901: Zju2112 Dynamic Rankings(区间第k小+树状数组套主席树)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1901 首先还是吐槽时间,我在zoj交无限tle啊!!!!!!!!我一直以为是程序错了啊啊啊啊啊啊. ...

  8. BZOJ1901 - Dynamic Rankings(树状数组套主席树)

    题目大意 给定一个有N个数字的序列,然后又m个指令,指令种类只有两种,形式如下: Q l r k 要求你查询区间[l,r]第k小的数是哪个 C i t  要求你把第i个数修改为t 题解 动态的区间第k ...

  9. bzoj 3110: [Zjoi2013]K大数查询 树状数组套线段树

    3110: [Zjoi2013]K大数查询 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 1384  Solved: 629[Submit][Stat ...

随机推荐

  1. FastAPI 学习之路(三十八)Static Files

    如果使用前后台不分离的开发方式,那么模板文件中使用的静态文件,比如css/js等文件的目录需要在后台进行配置,以便模板渲染是能正确读到这些静态文件.那么我们应该如何处理呢. 首先安装依赖 pip in ...

  2. OO第四单元及学期总结

    OO第四单元及学期总结 第四单元两次作业的架构设计 第一次作业 类图: 树形结构:使用Operation类管理UMLOperation以及parent为该UMLOperation的参数(UMLpara ...

  3. OO_JAVA_表达式求导_单元总结

    OO_JAVA_表达式求导_单元总结 这里引用个链接,是我写的另一份博客,讲的是设计层面的问题,下面主要是对自己代码的单元总结. 程序分析 (1)基于度量来分析自己的程序结构 第一次作业 程序结构大致 ...

  4. [CPP] 类的内存布局

    本文可以解决下面 3 个问题: 以不同方式继承之后,类的成员变量是如何分布的? 虚函数表及虚函数表指针,在可执行文件中的位置? 单一继承.多继承.虚拟继承之后,类的虚函数表的内容是如何变化的? 在这里 ...

  5. GeoServer-Manager应用:java编码实现发布矢量数据或栅格数据至GeoServer

    目录 简介与下载 依赖 编码发布矢量数据 编码发布栅格数据 简介与下载 GeoServer-Manager是使用Java编写的面向GeoServer的客户端库,通过GeoServer的REST管理接口 ...

  6. .Net(c#)汉字和Unicode编码互相转换实例

    {"name": "\u676d\u5dde", "href": "www.baidu.com"} 经常遇到这样内容的j ...

  7. SSH 信任关系建立

    需求hostA通过ssh登陆到hostB,实现免密登陆,以及SCP的免密传送文件 由于hostA要登陆到hostB 首先需要在hostA上生成密钥,使用以下命令 ssh-keygen -t rsa 按 ...

  8. 浅谈对typora的使用

    内容概要 - 什么是typora - typora的具体使用 目录 内容概要 - 什么是typora - typora的具体使用 1. 什么是typora 2.typora的具体使用 1.标题级别 2 ...

  9. Discovery直播 | 3D“模”术师,还原立体世界——探秘3D建模服务

    通过多张普通的照片重建一个立体逼真的3D物体模型,曾经靠想象实现的事情,现在, 使用HMS Core 3D建模服务即可实现! 3D模型作为物品在数字世界中的孪生体,用户可以自己拍摄.建模并在终端直观感 ...

  10. prometheus(3)之grafan可视化展现

    可视化UI界面Grafana的安装和配置 Grafana介绍 Grafana是一个跨平台的开源的度量分析和可视化工具,可以将采集的数据可视化的展示,并及时通知给告警接收方.它主要有以下六大特点: 1. ...