本文将演示如何在TVM中编写高性能的卷积实现。以平方大小的输入张量和滤波器为例,并假设卷积的输入量很大。使用不同的布局来存储数据,以实现更好的数据局部性。缓冲区布局为HWCN,代表高度,宽度,通道,批次。

准备和算法

将固定大小用于256通道和14 x 14尺寸的输入张量。批处理大小为256。卷积过滤器包含512个大小为3 x 3的过滤器。对于卷积,使用步幅大小1和填充大小1。以下代码定义了TVM中的卷积算法。

import numpy as np
import tvm
from tvm import te
 
# The sizes of inputs and filters
batch = 256
in_channel = 256
out_channel = 512
in_size = 14
kernel = 3
pad = 1
stride = 1
 
# Algorithm
A = te.placeholder((in_size, in_size, in_channel, batch), name="A")
W = te.placeholder((kernel, kernel, in_channel, out_channel), name="W")
out_size = (in_size - kernel + 2 * pad) // stride + 1
# Pad input
Apad = te.compute(
    (in_size + 2 * pad, in_size + 2 * pad, in_channel, batch),
    lambda yy, xx, cc, nn: tvm.tir.if_then_else(
        tvm.tir.all(yy >= pad, yy - pad < in_size, xx >= pad, xx - pad < in_size),
        A[yy - pad, xx - pad, cc, nn],
        tvm.tir.const(0.0, "float32"),
    ),
    name="Apad",
)
# Create reduction variables
rc = te.reduce_axis((0, in_channel), name="rc")
ry = te.reduce_axis((0, kernel), name="ry")
rx = te.reduce_axis((0, kernel), name="rx")
# Compute the convolution
B = te.compute(
    (out_size, out_size, out_channel, batch),
    lambda yy, xx, ff, nn: te.sum(
        Apad[yy * stride + ry, xx * stride + rx, rc, nn] * W[ry, rx, rc, ff], axis=[ry, rx, rc]
    ),
    name="B",
)

存储层级

首先指定缓冲区的内存层次结构。下图显示了GPU内存层次结构。与CPU内存层次结构的一个重要区别是,GPU提供了一个称为共享内存的缓存缓冲区,该缓冲区由程序员管理。如何最大化共享内存中的数据重用,对于在GPU内核中实现高性能至关重要。

将Apad和W都加载到缓冲区AA和WW中,将它们存储在共享内存中。这些缓冲区稍后将由同一线程块内的所有线程共享,以计算卷积。然后,每个线程将自己的部分从共享缓冲区加载到其本地寄存器AL和WL中。BL是输出B的本地缓存,它也存储在线程本地寄存器中。

# Designate the memory hierarchy
s = te.create_schedule(B.op)
s[Apad].compute_inline()  # compute Apad inline
AA = s.cache_read(Apad, "shared", [B])
WW = s.cache_read(W, "shared", [B])
AL = s.cache_read(AA, "local", [B])
WL = s.cache_read(WW, "local", [B])
BL = s.cache_write(B, "local")

阻塞Blocking

以下代码将工作负载分为线程块和单个线程。在矩阵乘法中遵循阻塞方案。如下图所示,给定像素坐标(y,x),线程块负责为输出通道和批处理计算block_factor x block_factor(64 x 64)的区域。由于共享内存空间的限制,每次仅将Apad和B中的step x block_factor(8 x 64)数据加载到共享内存中的缓冲区中。

# tile consts

tile = 8
num_thread = 8
block_factor = tile * num_thread
step = 8
vthread = 2
 
# Get the GPU thread indices
block_x = te.thread_axis("blockIdx.x")
block_y = te.thread_axis("blockIdx.y")
block_z = te.thread_axis("blockIdx.z")
thread_x = te.thread_axis((0, num_thread), "threadIdx.x")
thread_y = te.thread_axis((0, num_thread), "threadIdx.y")
thread_xz = te.thread_axis((0, vthread), "vthread", name="vx")
thread_yz = te.thread_axis((0, vthread), "vthread", name="vy")
 
# Split the workloads
hi, wi, fi, ni = s[B].op.axis
bz = s[B].fuse(hi, wi)
by, fi = s[B].split(fi, factor=block_factor)
bx, ni = s[B].split(ni, factor=block_factor)
 
# Bind the iteration variables to GPU thread indices
s[B].bind(bz, block_z)
s[B].bind(by, block_y)
s[B].bind(bx, block_x)

虚拟线程分割Virtual Thread Split

将工作负载从线程块划分到各个线程。为避免内存库冲突,使用虚拟线程将区域划分为4个部分,然后平铺为8x8网格。如下图所示,每个线程计算4个网格,每个网格的大小为4 x 4。

tyz, fi = s[B].split(fi, nparts=vthread)  # virtual thread split

txz, ni = s[B].split(ni, nparts=vthread)  # virtual thread split
ty, fi = s[B].split(fi, nparts=num_thread)
tx, ni = s[B].split(ni, nparts=num_thread)
s[B].reorder(bz, by, bx, tyz, txz, ty, tx, fi, ni)
 
s[B].bind(tyz, thread_yz)
s[B].bind(txz, thread_xz)
s[B].bind(ty, thread_y)
s[B].bind(tx, thread_x)

协作获取Cooperative Fetching

每个时间步骤都需要将步骤x block_factor数据从GPU全局内存传输到共享内存。为了减少每个线程的内存传输,以下代码使同一线程块中的线程,可以协作地从全局内存中获取相关数据。

# Schedule BL local write
s[BL].compute_at(s[B], tx)
yi, xi, fi, ni = s[BL].op.axis
ry, rx, rc = s[BL].op.reduce_axis
rco, rci = s[BL].split(rc, factor=step)
s[BL].reorder(rco, ry, rx, rci, fi, ni)
 
# Attach computation to iteration variables
s[AA].compute_at(s[BL], rx)
s[WW].compute_at(s[BL], rx)
s[AL].compute_at(s[BL], rci)
s[WL].compute_at(s[BL], rci)
 
# Schedule for A's shared memory load
yi, xi, ci, ni = s[AA].op.axis
ty, ci = s[AA].split(ci, nparts=num_thread)
tx, ni = s[AA].split(ni, nparts=num_thread)
_, ni = s[AA].split(ni, factor=4)
s[AA].reorder(ty, tx, yi, xi, ci, ni)
s[AA].bind(ty, thread_y)
s[AA].bind(tx, thread_x)
s[AA].vectorize(ni)  # vectorize memory load
 
# Schedule for W's shared memory load
yi, xi, ci, fi = s[WW].op.axis
ty, ci = s[WW].split(ci, nparts=num_thread)
tx, fi = s[WW].split(fi, nparts=num_thread)
_, fi = s[WW].split(fi, factor=4)
s[WW].reorder(ty, tx, yi, xi, ci, fi)
s[WW].bind(ty, thread_y)
s[WW].bind(tx, thread_x)
s[WW].vectorize(fi)  # vectorize memory load

生成CUDA内核

最后,使用TVM生成和编译CUDA内核,并评估卷积的延迟。

func = tvm.build(s, [A, W, B], "cuda")
ctx = tvm.gpu(0)
a_np = np.random.uniform(size=(in_size, in_size, in_channel, batch)).astype(A.dtype)
w_np = np.random.uniform(size=(kernel, kernel, in_channel, out_channel)).astype(W.dtype)
a = tvm.nd.array(a_np, ctx)
w = tvm.nd.array(w_np, ctx)
b = tvm.nd.array(np.zeros((out_size, out_size, out_channel, batch), dtype=B.dtype), ctx)
func(a, w, b)
evaluator = func.time_evaluator(func.entry_name, ctx, number=1)
print("Convolution: %f ms" % (evaluator(a, w, b).mean * 1e3))

出:

Convolution: 53.197723 ms

https://tvm.apache.org/docs/tutorials/optimize/opt_conv_cuda.html#sphx-glr-tutorials-optimize-opt-conv-cuda-py

如何在GPU上优化卷积的更多相关文章

  1. TVM在ARM GPU上优化移动深度学习

    TVM在ARM GPU上优化移动深度学习 随着深度学习的巨大成功,将深度神经网络部署到移动设备的需求正在迅速增长.与在台式机平台上所做的类似,在移动设备中使用GPU可以提高推理速度和能源效率.但是,大 ...

  2. 如何在CPU上优化GEMM(下)

    如何在CPU上优化GEMM(下) Array Packing 另一个重要的技巧是数组打包.这个技巧是对数组的存储维度进行重新排序,将某个维度上的连续访问模式在平滑后转换为顺序模式. 如上图所示,在阻塞 ...

  3. 如何在CPU上优化GEMM(上)

    如何在CPU上优化GEMM(上) (TL:DR)TVM提供了抽象接口,用户分别描述算法和算法的实现组织(所谓的调度).通常,在高性能调度中编写算法会破坏算法的可读性和模块性.尝试各种看似有希望的时间表 ...

  4. 如何使用TensorCores优化卷积

    如何使用TensorCores优化卷积 本文将演示如何在TVM中使用TensorCores编写高性能的卷积计划.假设卷积的输入有大量数据.首先介绍如何在GPU上优化卷积. TensorCore简介 每 ...

  5. GPU上如何优化卷积

    GPU上如何优化卷积 本文将演示如何在TVM中编写高性能卷积实现.我们以平方大小的输入张量和滤波器为例,假设卷积的输入是大批量的.在本例中,使用不同的布局来存储数据,以实现更好的数据局部性.缓冲区布局 ...

  6. TVM 优化 ARM GPU 上的移动深度学习

    TVM 优化 ARM GPU 上的移动深度学习 随着深度学习的巨大成功,将深度神经网络部署到移动设备的需求正在迅速增长.与桌面平台上所做的类似,在移动设备中使用 GPU 既有利于推理速度,也有利于能源 ...

  7. TensorFlow之CNN:运用Batch Norm、Dropout和早停优化卷积神经网络

    学卷积神经网络的理论的时候,我觉得自己看懂了,可是到了用代码来搭建一个卷积神经网络时,我发现自己有太多模糊的地方.这次还是基于MINIST数据集搭建一个卷积神经网络,首先给出一个基本的模型,然后再用B ...

  8. GPU自动调度卷积层

    GPU自动调度卷积层 本文对GPU使用自动调度程序. 与依靠手动模板定义搜索空间的基于模板的autotvm不同,自动调度程序不需要任何模板.用户只需要编写计算声明,无需任何调度命令或模板.自动调度程序 ...

  9. 如何在TVM上集成Codegen(上)

    如何在TVM上集成Codegen(上) 许多常用的深度学习内核,或者提供DNNL或TensorRT等框架和图形引擎,让用户以某种方式描述他们的模型,从而获得高性能.此外,新兴的深度学习加速器也有自己的 ...

随机推荐

  1. Sass中连体符(&)的运用

    在CSS中,这种想法是无法实现的,但在Sass中,可以轻松的通过连体符&来实现.这也是我们今天要说的. 我们先来回忆一下,CSS中常见的一组样式: /*页面中链接的颜色*/ a {clolor ...

  2. IDAPython类库---idaapi.py的源码

    #ThisfilewasautomaticallygeneratedbySWIG(http://www.swig.org).#Version2.0.12##Donotmakechangestothis ...

  3. LA3905流星

    题意:       在一个二维平面上有n个流星,每个流星有自己的初始位置和速度,有一个照相机,张相机的可视范围是一个矩形框,左下角(0,0)右上角(w ,h),然后问你相机的矩形内出现的最多的流星数是 ...

  4. UVA10294项链和手镯(等价类计数问题)

    题意:       给你一串珠子(连接成了一个环),共有n个珠子组成,你有t种颜色,现在你来给这个珠子染色,问染成项链有多少种方法?染成手镯有多少种方法?在项链里,经过顺时针旋转后相同的算一个,在手镯 ...

  5. HTTP1.0,1.1,2.0,HTTPS

    HTTP1.0/1.1/2.0/HTTPS HTTP(超文本传输协议)是互联网上应用最为广泛的一种网络协议.所有的WWW文件都必须遵守这个标准.设计HTTP最初的目的是为了提供一种发布和接收HTML页 ...

  6. 关于终端设备的设备唯一性的那些事之IMEI(转)

    最近和别人聊起来数据上报,一起讨论到imei和MAC地址,然后发现一个问题:知道这两个东西都不唯一,但是不知道为什么---- 回来上各种小网站巴拉巴拉找了一下,终于大概了解了前世今生,这里简单汇总一下 ...

  7. Day003 +和字符串使用的问题

    先看一段代码 int a=10; int b=20; System.out.println(""+a+b); System.out.println(a+b+"" ...

  8. 面向对象编程OOP

    这节讲一下,什么是面向对象(Object Oriented Programming).说面向对象之前,我们不得不提的是面向过程(Process Oriented Programming),C语言就是面 ...

  9. Java安全之FastJson JdbcRowSetImpl 链分析

    Java安全之FastJson JdbcRowSetImpl 链分析 0x00 前言 续上文的Fastjson TemplatesImpl链分析,接着来学习JdbcRowSetImpl 利用链,Jdb ...

  10. training11.14

    7-10 关于堆的判断 (25分)   题目:将一系列给定数字顺序插入一个初始为空的小顶堆H[].随后判断一系列相关命题是否为真.命题分下列几种: x is the root:x是根结点: x and ...