hdu 4704 Sum(组合,费马小定理,快速幂)
题目链接http://acm.hdu.edu.cn/showproblem.php?pid=4704;
这个题很刁是不是,一点都不6,为什么数据范围要开这么大,把我吓哭了,我kao......说笑的,哈哈。
一开始题意没看清(老毛病了),然后就以为用N对1e+9取模,因为给的数的范围为10100000
所以只能开数组模拟。错了一发。后来再看题,发现错了,S(n)代表的是将N分成n个数的合的不同种类。
那么求S(n)的方法就是高中数学老师教的隔板法,有点忘了。隔板法是这样的,如果N为5,那么将5写成5个1隔开,就像这样
1 1 1 1 1,顾名思义隔板法就是在中间空格出放板子,现在最左和最右边放个板子,不是空格出。如过要求S(3);那么就在4个空格中找2个放格子,那么每两块板子
间的1加起来就是所分的数字,比如放在第格和第二格,分的就为1 1 3,而所CN3
就是S(3);那么可的通项Cnk
那么S(1)+S(2)+S(3)+....S(N)=2N-1
所以就是求2N-1(mod)(1e+7);
因为N-1很大所以可以用费马小定理;
费马小定理在p为素数的情况下对任意的整数x都有x^p==x(mod p)
;如果x不能被p整除有x^(p-1)=1(mod p);由于a,b<1e9;所以不能被1e9+7整除, 求出了k[n],则a^k[n]%p=a^(k[n]%(p-1))%p;
证明如下: k[n]=m*(p-1)+d;那么a^k[n]%p=a^[(m*(p-1))+d]%p=(a^[m*(p-1)]%p*a^(d)%p)%p;
由费马小定理可知a^(m*(p-1))%p=1; 而d=k[n]%(p-1);得证;
然后再快速幂就行了。
1 #include<stdio.h>
2 #include<algorithm>
3 #include<iostream>
4 #include<stdlib.h>
5 #include<string.h>
6 typedef long long ll;
7 ll fastmi(ll n);
8 using namespace std;
9 ll a[100100];
10 char b[100005];
11 ll c[100100];
12 ll k[100100];
13 const int N=1e9+7;
14 const int M=1e9+6;
15 int main(void)
16 {
17 k[0]=5;
18 k[1]=0;
19 k[2]=0;
20 k[3]=0;
21 k[4]=0;
22 k[5]=0;
23 k[6]=0;
24 k[7]=0;
25 k[8]=0;
26 k[9]=1;
27 ll n,i,j,p,q,l;
28 while(scanf("%s",b)!=EOF)
29 {
30 memset(a,0,sizeof(a));
31 l=strlen(b);
32 ll t=1;
33 for(i=0; i<l; i++)
34 {
35 a[i]=b[l-i-1]-'0';
36 }
37
38 int uu=0;
39 for(i=0; i<l+20; i++)
40 {
41
42
43 a[i]=k[i]+a[i]+uu;
44 uu=a[i]/10;
45 a[i]=a[i]%10;
46 }
47
48 ll ww=1;
49 ll pp=0;
50 for(i=0; i<l+20; i++)
51 {
52 pp=(pp%M+(ww%M*a[i]%M)%M)%M;
53 ww=(ww%M*10%M)%M;
54
55 }//(N-1)modM=(N-1+M)modM,为1e+6;M-1为1e+5;k[]数组存的就为1e+5;
56 ll dd=fastmi(pp);
57 printf("%lld\n",dd);
58 }
59
60 return 0;
61
62
63 }
64
65 ll fastmi(ll n)//快速幂
66 {
67 ll x=1;
68 ll y=2;
69 while(n)
70 {
71 if(n&1)
72 {
73 x=(x%N*y%N)%N;
74 }
75 y=(y%N*y%N)%N;
76 n=n/2;
77 }
78 return x;
79 }
hdu 4704 Sum(组合,费马小定理,快速幂)的更多相关文章
- HDU 4704 Sum( 费马小定理 + 快速幂 )
链接:传送门 题意:求 N 的拆分数 思路: 吐嘈:求一个数 N 的拆分方案数,但是这个拆分方案十分 cd ,例如:4 = 4 , 4 = 1 + 3 , 4 = 3 + 1 , 4 = 2 + 2 ...
- hdu 4704 sum(费马小定理+快速幂)
题意: 这题意看了很久.. s(k)表示的是把n分成k个正整数的和,有多少种分法. 例如: n=4时, s(1)=1 4 s(2)=3 1,3 3,1 2,2 s ...
- hdu 4704 Sum 【费马小定理】
题目 题意:将N拆分成1-n个数,问有多少种组成方法. 例如:N=4,将N拆分成1个数,结果就是4:将N拆分成2个数,结果就是3(即:1+3,2+2,3+1)--1+3和3+1这个算两个,则这个就是组 ...
- HDU 4704 Sum(隔板原理+组合数求和公式+费马小定理+快速幂)
题目传送:http://acm.hdu.edu.cn/showproblem.php?pid=4704 Problem Description Sample Input 2 Sample Outp ...
- 数论 --- 费马小定理 + 快速幂 HDU 4704 Sum
Sum Problem's Link: http://acm.hdu.edu.cn/showproblem.php?pid=4704 Mean: 给定一个大整数N,求1到N中每个数的因式分解个数的 ...
- hdu 4704(费马小定理+快速幂取模)
Sum Time Limit: 2000/ ...
- 2014多校第一场 I 题 || HDU 4869 Turn the pokers(费马小定理+快速幂模)
题目链接 题意 : m张牌,可以翻n次,每次翻xi张牌,问最后能得到多少种形态. 思路 :0定义为反面,1定义为正面,(一开始都是反), 对于每次翻牌操作,我们定义两个边界lb,rb,代表每次中1最少 ...
- hdu_4869(费马小定理+快速幂)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4869 Turn the pokers Time Limit: 2000/1000 MS (Java/O ...
- BZOJ_[HNOI2008]_Cards_(置换+Burnside引理+乘法逆元+费马小定理+快速幂)
描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1004 共n个卡片,染成r,b,g三种颜色,每种颜色的个数有规定.给出一些置换,可以由置换得到的 ...
- hdu4549(费马小定理 + 快速幂)
M斐波那契数列F[n]是一种整数数列,它的定义如下: F[0] = a F[1] = b F[n] = F[n-1] * F[n-2] ( n > 1 ) 现在给出a, b, n,你能求出F[n ...
随机推荐
- javaSE高级篇7 — 设计原则和设计模式 — 设计模式慢慢更( 这是思想层次篇 )
1.什么是设计原则? 设计原则就是面向对象的原则嘛,即:OOP原则 换句话说:就是为了处理类与类之间的关系( 包括接口.类中的方法 ) 2.OOP设计原则有哪些? 1).开闭原则:就是指对拓展开放.对 ...
- C语言中的字节对齐
下面这个篇博客讲解很好 http://blog.csdn.net/meegomeego/article/details/9393783 总的来看分三类: 1. 不加 #pragma pack(n)伪指 ...
- C# 设计模式(1)——简单工厂模式、工厂模式、抽象工厂模式
1.前言 上一篇写了设计模式原则有助于我们开发程序的时候能写出高质量的代码(牵一发而不动全身),这个系列还是做个笔记温习一下各种设计模式,下面就看看简单工厂模式.工厂模式.抽象工厂模式. 2.简单工厂 ...
- HTML5 之 FileReader 的使用 (二) (网页上图片拖拽并且预显示可在这里学到) [转载]
转载至 : http://www.360doc.com/content/14/0214/18/1457948_352511645.shtml FileReader 资料(英文): https://de ...
- 【Java 泛型】之 <? super T> 和<? extends T> 中 super ,extends如何理解?有何异同?
Java 泛型 <? super T> 和<? extendsT>中 super ,extends怎么 理解?有何不同? 简介 前两篇文章介绍了泛型的基本用法.类型擦除以及泛型 ...
- 通信协议 HTTP TCP UDP
TCP HTTP UDP: 都是通信协议,也就是通信时所遵守的规则,只有双方按照这个规则"说话",对方才能理解或为之服务. TCP HTTP UDP三者的关系: T ...
- clickhouse客户端使用
测试初始化 clickhouse-client -m create database if not exists test; use test; drop table test; create tab ...
- react-native安卓运行报错:The number of method references in a .dex file cannot exceed 64K.
错误原因:App里面方法数超过64K解决方法:在android/app/build.gradle中添加implementation 'com.android.support:multidex:1.0. ...
- 连接opcserver时报错 connecting to OPC Server "****" CoCreateInstance 服务器运行失败
在普通windows系统连接OPCServer可能会报这样的错,排查很长时间,OPCServer跟Client都运行正常,点号录入也正常. 最后发现,其实是OPCServer 与OPCClient 权 ...
- Jenkins实例 自由风格项目
目录 一.General 二.源码管理 三..构建触发器 四.构建环境 五.构建 六.构建后操作 一.General General是构建任务的一些基本配置.名称,描述之类的. 项目名称:是刚才创建构 ...