正题

题目链接:https://www.luogu.com.cn/problem/P5494


题目大意

给出一个可重集合要求支持

  • 将集合\(p\)中在\([l,r]\)的数放到一个新的集合中
  • 将集合\(t\)的所有数放入集合\(p\)中
  • 在集合\(p\)中放入\(x\)个\(p\)
  • 查询集合\(p\)中在\([l,r]\)区间的数
  • 查询集合\(p\)中第\(k\)小的数

\(1\leq n,m\leq 2\times 10^5\)


解题思路

考虑怎么分裂,就照着一个位置\(pos\)做下去顺路一直开新节点,往左走时把右节点给新的节点就好了。

然后分裂两次再把左右合并就好了。

时间复杂度\(O(n\log n)\)


code

#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const ll N=2e5+10,M=N<<5;
ll n,m,tot,rt[N];
ll cnt,w[M],ls[M],rs[M];
void Change(ll &x,ll L,ll R,ll pos,ll val){
if(!x)x=++cnt;
if(L==R){w[x]+=val;return;}
ll mid=(L+R)>>1;
if(pos<=mid)Change(ls[x],L,mid,pos,val);
else Change(rs[x],mid+1,R,pos,val);
w[x]=w[ls[x]]+w[rs[x]];return;
}
ll Ask(ll x,ll L,ll R,ll l,ll r){
if(!x)return 0;
if(L==l&&R==r){return w[x];}
ll mid=(L+R)>>1;
if(r<=mid)return Ask(ls[x],L,mid,l,r);
if(l>mid)return Ask(rs[x],mid+1,R,l,r);
return Ask(ls[x],L,mid,l,mid)+Ask(rs[x],mid+1,R,mid+1,r);
}
ll Bsk(ll x,ll L,ll R,ll k){
if(L==R)return L;
ll mid=(L+R)>>1;
if(w[ls[x]]>=k)return Bsk(ls[x],L,mid,k);
return Bsk(rs[x],mid+1,R,k-w[ls[x]]);
}
ll Merge(ll x,ll y){
if(!x||!y)return x+y;
ls[x]=Merge(ls[x],ls[y]);
rs[x]=Merge(rs[x],rs[y]);
w[x]=w[x]+w[y];
return x;
}
ll Split(ll x,ll L,ll R,ll pos){
if(!x)return 0;
ll y=++cnt,mid=(L+R)>>1;
if(L==R)return y;
if(pos<=mid)swap(rs[x],rs[y]);
if(L==R)return y;
if(pos<=mid)ls[y]=Split(ls[x],L,mid,pos);
else rs[y]=Split(rs[x],mid+1,R,pos);
w[x]=w[ls[x]]+w[rs[x]];w[y]=w[ls[y]]+w[rs[y]];
return y;
}
signed main()
{
scanf("%lld%lld",&n,&m);tot=1;
for(ll i=1;i<=n;i++){
ll x;scanf("%lld",&x);
if(x)Change(rt[1],0,n,i,x);
}
while(m--){
ll op;scanf("%lld",&op);
if(op==0){
ll p,x,y;scanf("%lld%lld%lld",&p,&x,&y);
++tot;rt[tot]=rt[p];
rt[p]=Split(rt[p],0,n,x-1);
rt[tot]=Merge(rt[tot],Split(rt[p],0,n,y));
swap(rt[p],rt[tot]);
}
else if(op==1){
ll p,t;scanf("%lld%lld",&p,&t);
rt[p]=Merge(rt[p],rt[t]);
}
else if(op==2){
ll p,x,q;scanf("%lld%lld%lld",&p,&x,&q);
Change(rt[p],0,n,q,x);
}
else if(op==3){
ll p,x,y;scanf("%lld%lld%lld",&p,&x,&y);
printf("%lld\n",Ask(rt[p],0,n,x,y));
}
else if(op==4){
ll p,k;scanf("%lld%lld",&p,&k);
if(w[rt[p]]<k){puts("-1");continue;}
printf("%lld\n",Bsk(rt[p],0,n,k));
}
}
return 0;
}

P5494-[模板]线段树分裂的更多相关文章

  1. 「Luogu P5494 【模板】线段树分裂」

    (因为没有认证,所以这道题就由Froggy上传) 线段树分裂用到的地方确实并不多,luogu上以前也没有这道模板题,所以就出了一道,实在是想不出怎么出模板了,所以这道题可能可以用一些其他的算法水过去. ...

  2. 有趣的线段树模板合集(线段树,最短/长路,单调栈,线段树合并,线段树分裂,树上差分,Tarjan-LCA,势能线段树,李超线段树)

    线段树分裂 以某个键值为中点将线段树分裂成左右两部分,应该类似Treap的分裂吧(我菜不会Treap).一般应用于区间排序. 方法很简单,就是把分裂之后的两棵树的重复的\(\log\)个节点新建出来, ...

  3. hdu 1754 I Hate It (模板线段树)

    http://acm.hdu.edu.cn/showproblem.php?pid=1754 I Hate It Time Limit: 9000/3000 MS (Java/Others)    M ...

  4. 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)

    To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...

  5. [BZOJ4552][TJOI2016&&HEOI2016]排序(二分答案+线段树/线段树分裂与合并)

    解法一:二分答案+线段树 首先我们知道,对于一个01序列排序,用线段树维护的话可以做到单次排序复杂度仅为log级别. 这道题只有一个询问,所以离线没有意义,而一个询问让我们很自然的想到二分答案.先二分 ...

  6. [HEOI2016/TJOI2016] 排序 解题报告(二分答案/线段树分裂合并+set)

    题目链接: https://www.luogu.org/problemnew/show/P2824 题目描述: 在2016年,佳媛姐姐喜欢上了数字序列.因而他经常研究关于序列的一些奇奇怪怪的问题,现在 ...

  7. luoguP2824 [HEOI2016/TJOI2016]排序(线段树分裂做法)

    题意 所谓线段树分裂其实是本题的在线做法. 考虑如果我们有一个已经排好序的区间的权值线段树,那么就可以通过线段树上二分的方法得到第\(k\)个数是谁. 于是用set维护每个升序/降序区间的左右端点以及 ...

  8. BZOJ4552 HEOI2016/TJOI2016排序(线段树合并+线段树分裂)

    很久以前写过二分答案离线的做法,比较好理解.事实上这还是一个线段树合并+分裂的板子题,相比离线做法以更优的复杂度做了更多的事情.具体不说了.怎么交了一遍luogu上就跑第一了啊 #include< ...

  9. hdu3966 树链剖分点权模板+线段树区间更新/树状数组区间更新单点查询

    点权树的模板题,另外发现树状数组也是可以区间更新的.. 注意在对链进行操作时方向不要搞错 线段树版本 #include<bits/stdc++.h> using namespace std ...

  10. 【线段树】【P3372】模板-线段树

    百度百科 Definition&Solution 线段树是一种log级别的树形结构,可以处理区间修改以及区间查询问题.期望情况下,复杂度为O(nlogn). 核心思想见百度百科,线段树即将每个 ...

随机推荐

  1. 在Asp .net core 中通过属性映射实现动态排序和数据塑形

    目录 属性映射服务实现 动态排序 数据塑形 属性映射服务实现 public class PropertyMappingValue { public IEnumerable<string> ...

  2. 不同的 count 用法

    不同的 count 用法效率:在 select count(?) from t 这样的查询语句里面, count(*).count(主键 id).count(字段) 和 count(1) 等不同用法的 ...

  3. PC微信多开

    1.桌面上面新建一个  多开.txt . 2.将下面的内容拷贝进去 TASKKILL /F /IM wechat.exestart "" "E:\wechat\WeCha ...

  4. roslaunch保存的log文件没有打印的ERROR信息

    最近调试,发现roslaunch启动的节点,log文件中没有ERROR信息. 经过一番查证发现,INFO和WARN是保存在log文件中,ERROR直接打印在terminal 参考: https://g ...

  5. MutationObserver API

    1.概述 MutationObserver接口提供了监视对DOM树所做更改的能力.它被设计为旧的Mutation Events功能的替代品,该功能是DOM3 Events规范的一部分. 但是,它与Mu ...

  6. MVC模式职责分工及学习路上的一些感想

    在正文之前想先说说自己coding道路上的一点感想,不得不感慨一下时间过得很快,之前写过一篇关于JavaWeb_MVC模式的一篇博客,转眼之间时间已经过去了两个月,那时候还是一个刚刚接触JavaWeb ...

  7. Qt中QOpengl的QMatrix4x4矩阵作用原理以及使用方法

    1.矩阵具有坐标变换的作用,例如:左乘一个旋转矩阵,实现点的坐标旋转,左乘一个平移矩阵实现,点的平移 2.一个点可以同时串联相乘几个变换矩阵,实现坐标连续变换,根据左乘规则,右边矩阵先作用于点,作用顺 ...

  8. 使用 IDEA 配合 Dockerfile 部署 SpringBoot 工程

    准备 SpringBoot 工程 新建 SpringBoot 项目,默认的端口是 8080 ,新建 Controller 和 Mapping @RestController public class ...

  9. Win10 下安装Ubuntu 21.04桌面版 双系统 并设置win10为默认启动系统 详细教程

    @ 目录 〇.写在前面 〇 - Plus:如何进入BIOS 〇 - Plus - Plus:U盘启动快捷键 一.磁盘分区:Win10划分未分配空间 二.下载Ubuntu 21.04镜像 三.安装U盘启 ...

  10. 七、Abp vNext 基础篇丨文章聚合功能下

    介绍 不好意思这篇文章应该早点更新的,这几天在忙CICD的东西没顾得上,等后面整好了CICD我也发2篇文章讲讲,咱们进入正题,这一章来补全剩下的 2个接口和将文章聚合进行完善. 开工 上一章大部分业务 ...