P6134-[JSOI2015]最小表示【bitset,拓扑排序】
正题
题目链接:https://www.luogu.com.cn/problem/P6134
题目大意
给出一张\(n\)个点\(m\)条边的\(DAG\)。求联通情况不变的情况下最多删除几条边。
\(1\leq n\leq 3\times 10^4,0\leq M\leq 10^5\)
解题思路
拓扑排序后,如果确定了后面若干个的最优解,那么不会影响到前面的决策,我们只需要对于每个点考虑删除最多的出边即可。
从后往前枚举,对于一个点连接的集合\(E\),按照拓扑序从小到大排后,每次加入一个点和它所有连接的点,如果该点已经联通,那么这条边就可以删除了。
用\(bitset\)可以快速实现这个过程。
时间复杂度\(O(\frac{mn}{w})\)
code
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<bitset>
#include<queue>
#include<vector>
using namespace std;
const int N=3e4+10;
int n,m,cnt,tot,ans;
int in[N],ls[N],top[N],tfn[N];
queue<int> q;vector<int> v;
bitset<N> b[N];
struct node{
int to,next;
}a[N<<2];
void addl(int x,int y){
a[++tot].to=y;
a[tot].next=ls[x];
ls[x]=tot;return;
}
void topsort(){
for(int i=1;i<=n;i++)
if(!in[i])q.push(i);
while(!q.empty()){
int x=q.front();q.pop();
top[++cnt]=x;tfn[x]=cnt;
for(int i=ls[x];i;i=a[i].next){
int y=a[i].to;
in[y]--;
if(!in[y])q.push(y);
}
}
return;
}
bool cmp(int x,int y)
{return tfn[x]<tfn[y];}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++){
int x,y;
scanf("%d%d",&x,&y);
addl(x,y);in[y]++;
}
topsort();
for(int p=n;p>=1;p--){
int x=top[p];v.clear();b[x][x]=1;
for(int i=ls[x];i;i=a[i].next)
v.push_back(a[i].to);
sort(v.begin(),v.end(),cmp);
for(int i=0;i<v.size();i++){
int y=v[i];
if(b[x][y]) ans++;
else b[x]|=b[y];
}
}
printf("%d\n",ans);
}
P6134-[JSOI2015]最小表示【bitset,拓扑排序】的更多相关文章
- BZOJ4484 JSOI2015最小表示(拓扑排序+bitset)
考虑在每个点的出边中删除哪些.如果其出边所指向的点中存在某点能到达另一点,那么显然指向被到达点的边是没有用的.于是拓扑排序逆序处理,按拓扑序枚举出边,bitset维护可达点集合即可. #include ...
- 4484: [Jsoi2015]最小表示(拓扑序+bitset维护连通性)
4484: [Jsoi2015]最小表示 题目链接 题解: bitset的题感觉都好巧妙啊QAQ. 因为题目中给出的是一个DAG,如果\(u->v\)这条边可以删去,等价于还存在一个更长的路径可 ...
- bzoj 4484 [Jsoi2015]最小表示——bitset
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4484 每个点上存一下它到每个点的连通性.用 bitset 的话空间就是 \( \frac{n ...
- 拓扑排序详解(梅开二度之dfs版按字典序输出拓扑路径+dfs版输出全部拓扑路径
什么是拓扑排序? 先穿袜子再穿鞋,先当孙子再当爷.这就是拓扑排序! 拓扑排序说白了其实不太算是一种排序算法,但又像是一种排序(我是不是说了个废话qwq) 他其实是一个有向无环图(DAG, Direct ...
- BZOJ4484: [Jsoi2015]最小表示(拓扑排序乱搞+bitset)
Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 348 Solved: 172[Submit][Status][Discuss] Descriptio ...
- [BZOJ4484][JSOI2015]最小表示[拓扑排序+bitset]
题意 给你一个 \(n\) 个点 \(m\) 条边的 \(\rm DAG\) ,询问最多能够删除多少条边,使得图的连通性不变 \(n\leq 3\times 10^4\ ,m\leq 10^5\) . ...
- 【BZOJ-1565】植物大战僵尸 拓扑排序 + 最小割
1565: [NOI2009]植物大战僵尸 Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 1972 Solved: 917[Submit][Statu ...
- NOIP 车站分级 (luogu 1983 & codevs 3294 & vijos 1851) - 拓扑排序 - bitset
描述 一条单向的铁路线上,依次有编号为 1, 2, ..., n 的 n 个火车站.每个火车站都有一个级别,最低为 1 级.现有若干趟车次在这条线路上行驶,每一趟都满足如下要求:如果这趟车次停靠了火车 ...
- [BZOJ1565][NOI2009]植物大战僵尸-[网络流-最小割+最大点权闭合子图+拓扑排序]
Description 传送门 Solution em本题知识点是用网络流求最大点权闭合子图. 闭合图定义:图中任何一个点u,若有边u->v,则v必定也在图中. 建图:运用最小割思想,将S向点权 ...
随机推荐
- 【MyBatis系列5】MyBatis4大核心对象SqlSessionFactoryBuiler,SqlSessionFactory,SqlSession,Mapper
前言 前几篇篇我们简单讲解了MyBatis的简单用法,以及一对一和一对多以及多对多的相关动态sql查询标签的使用,也提到了嵌套查询引发了N+1问题,以及延迟加载相关功能,本篇文章将会从MyBatis底 ...
- c++与c#混合编程
C#写界面比较方便,而C++则擅长写算法,所以将两者结合起来将会加快程序的开发速度,并保证程序的质量.但C#与C++的混合编程有很多细节问题需要注意,下面简要列举一些并指出相应的解决办法. 1. 将本 ...
- 自旋锁&信号量
1. 自旋锁 Linux内核中最常见的锁是自旋锁.一个自旋锁就是一个互斥设备,它只能有两个值:"锁定"和"解锁".如果锁可用,则"锁定"位被 ...
- PsSetCreateProcessNotifyRoutineEx 创建回调函数
转载自http://blog.csdn.net/yushiqiang1688/article/details/5209597 最近要做一个进程监控的程序,功能很简单,就是创建和退出进程的时候,能触发我 ...
- springboot全局异常封装案例
@ControllerAdvice三个场景:>https://www.cnblogs.com/lenve/p/10748453.html 全局异常处理 全局数据绑定 全局数据预处理 首先定义一个 ...
- SSH无法正常连接服务器
远程权限没有打开 #允许root登录 PermitRootLogin yes #不允许空密码登录 PermitEmptyPasswords no 远端的ssh信息有变化,本地保存的那个需要删掉 Use ...
- “ShardingCore”是如何针对分表下的分页进行优化的
分表情况下的分页如何优化 首先还是要给自己的开原框架打个广告 sharding-core 针对efcore 2+版本的分表组件,首先我们来快速回顾下目前市面上分表下针对分页常见的集中解决方案 分表解决 ...
- vue 双向绑定(v-model 双向绑定、.sync 双向绑定、.sync 传对象)
1. v-model实现自定义组件双向绑定 v-model其实是个语法糖,如果没按照相应的规范定义组件,直接写v-model是不会生效的.再说一遍,类似于v-on:click可以简写成@click,v ...
- Django分页组件——Paginator
from django.core.paginator import Paginator #导入Paginator objects = ['john','paul','george','ringo',' ...
- 这款打怪升级的小游戏,7 年前出生于 GitHub 社区,如今在谷歌商店有 8 万人打了满分
今天我在 GitHub 摸鱼寻找新的"目标"时,发现了一个开源项目是 RougeLike 类的角色扮演游戏「破碎版像素地牢」(Shattered Pixel Dungeon)类似魔 ...