求出凸包,显然四个点在凸包上。考虑枚举某点,再移动另一点作为对角线,容易发现剩下两点的最优位置是单调的。过程类似旋转卡壳。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 2010
#define vector point
#define nxt(i) (i%tail+1)
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;}
int gcd(int n,int m){return m==0?n:gcd(m,n%m);}
int read()
{
int x=0,f=1;char c=getchar();
while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
return x*f;
}
int n;
double ans;
const double eps=1E-8;
struct point
{
double x,y;
vector operator +(const vector&a) const
{
return (vector){x+a.x,y+a.y};
}
vector operator -(const vector&a) const
{
return (vector){x-a.x,y-a.y};
}
double operator *(const vector&a) const
{
return x*a.y-y*a.x;
}
bool operator <(const point&a) const
{
return x<a.x||x==a.x&&y<a.y;
}
}a[N],b[N];
double area(point x,point z,point y)
{
return (y-x)*(z-x);
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj1069.in","r",stdin);
freopen("bzoj1069.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read();
for (int i=1;i<=n;i++) scanf("%lf%lf",&a[i].x,&a[i].y);
sort(a+1,a+n+1);
int tail=0;
for (int i=1;i<=n;i++)
{
while (tail>1&&(b[tail]-b[tail-1])*(a[i]-b[tail-1])<eps) tail--;
b[++tail]=a[i];
}
for (int i=n-1;i>=1;i--)
{
while (tail>1&&(b[tail]-b[tail-1])*(a[i]-b[tail-1])<eps) tail--;
b[++tail]=a[i];
}
for (int i=1;i<=tail;i++)
{
int p=nxt(i),q=nxt(i+2);
for (int j=i+2;j<=tail;j++)
{
while (nxt(p)!=i&&area(b[i],b[j],b[p])<area(b[i],b[j],b[nxt(p)])) p=nxt(p);
while (nxt(q)!=j&&area(b[i],b[q],b[j])<area(b[i],b[nxt(q)],b[j])) q=nxt(q);
ans=max(ans,area(b[i],b[j],b[p])+area(b[i],b[q],b[j]));//cout<<area(b[i],b[j],b[p])+area(b[i],b[q],b[j])<<endl;
}
}
printf("%.3f",ans/2);
return 0;
}

  

BZOJ1069 SCOI2007最大土地面积(凸包+旋转卡壳)的更多相关文章

  1. bzoj1069: [SCOI2007]最大土地面积 凸包+旋转卡壳求最大四边形面积

    在某块平面土地上有N个点,你可以选择其中的任意四个点,将这片土地围起来,当然,你希望这四个点围成的多边形面积最大. 题解:先求出凸包,O(n)枚举旋转卡壳,O(n)枚举另一个点,求最大四边形面积 /* ...

  2. [BZOJ1069][SCOI2007]最大土地面积 凸包+旋转卡壳

    1069: [SCOI2007]最大土地面积 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 3669  Solved: 1451[Submit][Sta ...

  3. luogu P4166 [SCOI2007]最大土地面积 凸包 旋转卡壳

    LINK:最大土地面积 容易想到四边形的边在凸包上面 考虑暴力枚举凸包上的四个点计算面积. 不过可以想到可以直接枚举对角线的两个点找到再在两边各找一个点 这样复杂度为\(n^3\) 可以得到50分. ...

  4. bzoj 1069: [SCOI2007]最大土地面积 凸包+旋转卡壳

    题目大意: 二维平面有N个点,选择其中的任意四个点使这四个点围成的多边形面积最大 题解: 很容易发现这四个点一定在凸包上 所以我们枚举一条边再旋转卡壳确定另外的两个点即可 旋(xuan2)转(zhua ...

  5. BZOJ1069 SCOI2007 最大土地面积 凸包、旋转卡壳

    传送门 在这里假设可以选择两个相同的点吧-- 那么选出来的四个点一定会在凸包上 建立凸包,然后枚举这个四边形的对角线.策略是先枚举对角线上的一个点,然后沿着凸包枚举另一个点.在枚举另一个点的过程中可以 ...

  6. bzoj 1069 [SCOI2007]最大土地面积(旋转卡壳)

    1069: [SCOI2007]最大土地面积 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 2277  Solved: 853[Submit][Stat ...

  7. 【BZOJ 1069】【SCOI 2007】最大土地面积 凸包+旋转卡壳

    因为凸壳上对踵点的单调性所以旋转卡壳线性绕一圈就可以啦啦啦--- 先求凸包,然后旋转卡壳记录$sum1$和$sum2$,最后统计答案就可以了 #include<cmath> #includ ...

  8. [SCOI2007]最大土地面积(旋转卡壳)

    首先,最大四边形的四个点一定在凸包上 所以先求凸包 有个结论,若是随机数据,凸包包括的点大约是\(\log_2n\)个 然鹅,此题绝对不会这么轻松,若\(O(n^4)\)枚举,只有50分 所以还是要想 ...

  9. [USACO2003][poj2187]Beauty Contest(凸包+旋转卡壳)

    http://poj.org/problem?id=2187 题意:老题了,求平面内最远点对(让本渣默默想到了悲剧的AHOI2012……) 分析: nlogn的凸包+旋转卡壳 附:http://www ...

  10. UVA 4728 Squares(凸包+旋转卡壳)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=17267 [思路] 凸包+旋转卡壳 求出凸包,用旋转卡壳算出凸包的直 ...

随机推荐

  1. ubuntu 下使用 jsoncpp库

    做项目的时候需要用c++解析json文件, 之前使用的是libjson 库, 但当g++ 开启 -std=c++11 选项时, 该库的很多功能不能用, 而且还有一些其他的问题, 不推荐使用. 后来采用 ...

  2. Android学习之键盘事件

    java代码: package com.example.keyboardtest; import android.app.Activity; import android.os.Bundle; imp ...

  3. OpenGL初学:安装配置与第一个程序

    OpenGL初学:安装配置与第一个程序 2014年10月12日 12:37:03 process-z 阅读数:12413 标签: opengl安装教程 更多 个人分类: OpenGL   计算机图形学 ...

  4. Spring boot多模块(moudle)中的一个注入错误(Unable to start embedded container; nested exception is org)

    org.springframework.context.ApplicationContextException: Unable to start embedded container; nested ...

  5. Linux系统特殊变量

    系统给定的特殊变量: 变量名 作用 $0 当前脚本的名字 $n 传递给脚本或者函数的参数,n表示第几个参数 $# 传递给脚本或函数的参数个数 $* 传递给脚本或函数的所有参数 $@ 传递给脚本或者函数 ...

  6. hibernate 4 需要导入的jar包

    <!-- 下面是导入 hibernate 必须的 jar 包 --> <!-- https://mvnrepository.com/artifact/antlr/antlr --&g ...

  7. mybatis源码-解析配置文件(四)之配置文件Mapper解析

    在 mybatis源码-解析配置文件(三)之配置文件Configuration解析 中, 讲解了 Configuration 是如何解析的. 其中, mappers作为configuration节点的 ...

  8. Hexo+Github搭建博客问题

    搭建过程如下:   http://www.cnblogs.com/fengxiongZz/p/7707568.html   问题:第6步,发布上传代码一直不成功(没异常,也没成功).   解决:修改_ ...

  9. 使用Zabbix服务端本地邮箱账号发送报警邮件及指定报警邮件操作记录

    邮件报警有两种情况:1)Zabbix服务端只是单纯的发送报警邮件到指定邮箱,发送报警邮件的这个邮箱账号是Zabbix服务端的本地邮箱账号(例如:root@localhost.localdomain), ...

  10. 路由嵌套 active

    http://www.jb51.net/article/102574.htm; https://segmentfault.com/q/1010000008950255 <el-menu :def ...