求出凸包,显然四个点在凸包上。考虑枚举某点,再移动另一点作为对角线,容易发现剩下两点的最优位置是单调的。过程类似旋转卡壳。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 2010
#define vector point
#define nxt(i) (i%tail+1)
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;}
int gcd(int n,int m){return m==0?n:gcd(m,n%m);}
int read()
{
int x=0,f=1;char c=getchar();
while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
return x*f;
}
int n;
double ans;
const double eps=1E-8;
struct point
{
double x,y;
vector operator +(const vector&a) const
{
return (vector){x+a.x,y+a.y};
}
vector operator -(const vector&a) const
{
return (vector){x-a.x,y-a.y};
}
double operator *(const vector&a) const
{
return x*a.y-y*a.x;
}
bool operator <(const point&a) const
{
return x<a.x||x==a.x&&y<a.y;
}
}a[N],b[N];
double area(point x,point z,point y)
{
return (y-x)*(z-x);
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj1069.in","r",stdin);
freopen("bzoj1069.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read();
for (int i=1;i<=n;i++) scanf("%lf%lf",&a[i].x,&a[i].y);
sort(a+1,a+n+1);
int tail=0;
for (int i=1;i<=n;i++)
{
while (tail>1&&(b[tail]-b[tail-1])*(a[i]-b[tail-1])<eps) tail--;
b[++tail]=a[i];
}
for (int i=n-1;i>=1;i--)
{
while (tail>1&&(b[tail]-b[tail-1])*(a[i]-b[tail-1])<eps) tail--;
b[++tail]=a[i];
}
for (int i=1;i<=tail;i++)
{
int p=nxt(i),q=nxt(i+2);
for (int j=i+2;j<=tail;j++)
{
while (nxt(p)!=i&&area(b[i],b[j],b[p])<area(b[i],b[j],b[nxt(p)])) p=nxt(p);
while (nxt(q)!=j&&area(b[i],b[q],b[j])<area(b[i],b[nxt(q)],b[j])) q=nxt(q);
ans=max(ans,area(b[i],b[j],b[p])+area(b[i],b[q],b[j]));//cout<<area(b[i],b[j],b[p])+area(b[i],b[q],b[j])<<endl;
}
}
printf("%.3f",ans/2);
return 0;
}

  

BZOJ1069 SCOI2007最大土地面积(凸包+旋转卡壳)的更多相关文章

  1. bzoj1069: [SCOI2007]最大土地面积 凸包+旋转卡壳求最大四边形面积

    在某块平面土地上有N个点,你可以选择其中的任意四个点,将这片土地围起来,当然,你希望这四个点围成的多边形面积最大. 题解:先求出凸包,O(n)枚举旋转卡壳,O(n)枚举另一个点,求最大四边形面积 /* ...

  2. [BZOJ1069][SCOI2007]最大土地面积 凸包+旋转卡壳

    1069: [SCOI2007]最大土地面积 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 3669  Solved: 1451[Submit][Sta ...

  3. luogu P4166 [SCOI2007]最大土地面积 凸包 旋转卡壳

    LINK:最大土地面积 容易想到四边形的边在凸包上面 考虑暴力枚举凸包上的四个点计算面积. 不过可以想到可以直接枚举对角线的两个点找到再在两边各找一个点 这样复杂度为\(n^3\) 可以得到50分. ...

  4. bzoj 1069: [SCOI2007]最大土地面积 凸包+旋转卡壳

    题目大意: 二维平面有N个点,选择其中的任意四个点使这四个点围成的多边形面积最大 题解: 很容易发现这四个点一定在凸包上 所以我们枚举一条边再旋转卡壳确定另外的两个点即可 旋(xuan2)转(zhua ...

  5. BZOJ1069 SCOI2007 最大土地面积 凸包、旋转卡壳

    传送门 在这里假设可以选择两个相同的点吧-- 那么选出来的四个点一定会在凸包上 建立凸包,然后枚举这个四边形的对角线.策略是先枚举对角线上的一个点,然后沿着凸包枚举另一个点.在枚举另一个点的过程中可以 ...

  6. bzoj 1069 [SCOI2007]最大土地面积(旋转卡壳)

    1069: [SCOI2007]最大土地面积 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 2277  Solved: 853[Submit][Stat ...

  7. 【BZOJ 1069】【SCOI 2007】最大土地面积 凸包+旋转卡壳

    因为凸壳上对踵点的单调性所以旋转卡壳线性绕一圈就可以啦啦啦--- 先求凸包,然后旋转卡壳记录$sum1$和$sum2$,最后统计答案就可以了 #include<cmath> #includ ...

  8. [SCOI2007]最大土地面积(旋转卡壳)

    首先,最大四边形的四个点一定在凸包上 所以先求凸包 有个结论,若是随机数据,凸包包括的点大约是\(\log_2n\)个 然鹅,此题绝对不会这么轻松,若\(O(n^4)\)枚举,只有50分 所以还是要想 ...

  9. [USACO2003][poj2187]Beauty Contest(凸包+旋转卡壳)

    http://poj.org/problem?id=2187 题意:老题了,求平面内最远点对(让本渣默默想到了悲剧的AHOI2012……) 分析: nlogn的凸包+旋转卡壳 附:http://www ...

  10. UVA 4728 Squares(凸包+旋转卡壳)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=17267 [思路] 凸包+旋转卡壳 求出凸包,用旋转卡壳算出凸包的直 ...

随机推荐

  1. 一、java虚拟机内存区域

    内存区域 java虚拟机在java程序的过程中会把它所管理的内存划分为若干个不同的数据区域.java虚拟机规范将JVM管理的内存分为:程序计数器.本地方法栈.Java虚拟机栈.方法区.Java堆.如下 ...

  2. 【转】Influxdb 编译

    编译针对当前 github上influxdb的master代码 其实github上的CONTRIBUTING.md 里已经说的很明白,按其一步步来开即开,唯一遇到的问题可能就是下载依赖时被墙无法下载, ...

  3. BootStrap学习(3)_导航菜单

    一.导航元素 1.表格导航或标签 以一个带有 class .nav 的无序列表开始. 添加 class .nav-tabs. <!DOCTYPE html> <html xmlns= ...

  4. NOI Day2线上同步赛崩盘记

    Preface 蒟蒻愉快的NOI线上赛Day2之行,不过因为太菜就凉了 这次由于策略&&网络的问题,最后两题都没有交,结果就靠T1稳住拿了75分就回家了. 我真是太菜了. 屠龙勇士 首 ...

  5. 解读tensorflow之rnn

    from: http://lan2720.github.io/2016/07/16/%E8%A7%A3%E8%AF%BBtensorflow%E4%B9%8Brnn/ 这两天想搞清楚用tensorfl ...

  6. 性能调优之vmstat命令

    vmstat是Virtual Meomory Statistics(虚拟内存统计)的缩写,可对操作系统的虚拟内存.进程.IO读写.CPU活动等进行监视.它是对系统的整体情况进行统计,不足之处是无法对某 ...

  7. vue开发小结(上)

    前言: 18年年底,就一个字,忙,貌似一到年底哪个公司都在冲业绩,包括我们自己开发自己公司的项目也一样得加把劲.自从18年年初立了个flag17年年终总结——走过2017,迎来2018Flag到现在又 ...

  8. 从源码的角度看 React JS 中批量更新 State 的策略(上)

    在之前的文章「深入理解 React JS 中的 setState」与 「从源码的角度再看 React JS 中的 setState」 中,我们分别看到了 React JS 中 setState 的异步 ...

  9. Ionic 2.0 相关资料

    原文发表于我的技术博客 本文汇总了学习 Ionic 2 的相关资料,也算是一个 Ionic Awesome 列表,供大家参考,有需要分享的可以留言. 原文发表于我的技术博客 1. 文档 1.1 Ion ...

  10. 网站响应式布局/网站自适应问题+rem、em、px、pt及网站字体大小设配

    Bootstrap 网格系统: Bootstrap CSS: Bootstrap 组件及插件: 一.什么是响应式布局?       响应式布局是Ethan Marcotte在2010年5月份提出的一个 ...