题目描述

Bessie正在计划一年一度的奶牛大集会,来自全国各地的奶牛将来参加这一次集会。当然,她会选择最方便的地点来举办这次集会。每个奶牛居住在 N(1<=N<=100,000) 个农场中的一个,这些农场由N-1条道路连接,并且从任意一个农场都能够到达另外一个农场。道路i连接农场A_i和B_i(1 <= A_i <=N; 1 <= B_i <= N),长度为L_i(1 <= L_i <= 1,000)。集会可以在N个农场中的任意一个举行。另外,每个牛棚中居住者C_i(0 <= C_i <= 1,000)只奶牛。在选择集会的地点的时候,Bessie希望最大化方便的程度(也就是最小化不方便程度)。比如选择第X个农场作为集会地点,它的不方便程度是其它牛棚中每只奶牛去参加集会所走的路程之和,(比如,农场i到达农场X的距离是20,那么总路程就是C_i*20)。帮助Bessie找出最方便的地点来举行大集会。 考虑一个由五个农场组成的国家,分别由长度各异的道路连接起来。在所有农场中,3号和4号没有奶牛居住。 
 
 

输入

第一行:一个整数N * 第二到N+1行:第i+1行有一个整数C_i * 第N+2行到2*N行,第i+N+1行为3个整数:A_i,B_i和L_i。

输出

* 第一行:一个值,表示最小的不方便值。

样例输入

5
1
1
0
0
2
1 3 1
2 3 2
3 4 3
4 5 3

样例输出

15
 
这是一道入门的树上问题。首先说一下暴力,以每一个点为根对整棵树做一遍dfs,最后找出最优解,时间复杂度是O(n^2)。但显然并不用这么麻烦,对于以i为集会点的结果,如果把集会点移向与i相连的点j,那么,把这条连接i与j的边断开后可以把整个树变成两个联通块。把集会点从i移向j后,i所在联通块所有点费用要加上这条边边权费用,j所在联通块所有点费用要减掉这条边边权的费用。那么只要处理出一个点的结果,再O(n)转移就可以了。以一个点为根,dfs向子节点转移,对于一个节点i转移到它的一个子节点j,两个联通块节点数分别是以j为根的子树节点数和总节点数-以j为根的子树节点数。
最后附上代码。
#include<queue>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
long long size[100010];
int head[100010];
int next[200010];
int to[200010];
long long val[200010];
int f[100010];
long long s[100010];
long long a[100010];
int x,y;
long long v;
int n;
int tot;
long long sum;
long long ans;
void add(int x,int y,long long v)
{
tot++;
next[tot]=head[x];
head[x]=tot;
to[tot]=y;
val[tot]=v;
}
void dfs(int x,int fa)
{
f[x]=fa;
for(int i=head[x];i;i=next[i])
{
if(to[i]!=fa)
{
dfs(to[i],x);
size[x]+=size[to[i]];
}
}
}
void dfs2(int x,long long dep)
{
ans+=dep*a[x];
for(int i=head[x];i;i=next[i])
{
if(to[i]!=f[x])
{
dfs2(to[i],dep+val[i]);
}
}
}
void find(int x)
{
for(int i=head[x];i;i=next[i])
{
if(to[i]!=f[x])
{
s[to[i]]=s[x]-size[to[i]]*val[i]+(sum-size[to[i]])*val[i];
find(to[i]);
}
}
}
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%lld",&size[i]);
a[i]=size[i];
sum+=size[i];
}
for(int i=1;i<n;i++)
{
scanf("%d%d%lld",&x,&y,&v);
add(x,y,v);
add(y,x,v);
}
dfs(1,1);
dfs2(1,0ll);
s[1]=ans;
find(1);
ans=1ll<<62;
for(int i=1;i<=n;i++)
{
ans=min(ans,s[i]);
}
printf("%lld",ans);
}

BZOJ1827[USACO 2010 Mar Gold 1.Great Cow Gathering]——树形DP的更多相关文章

  1. BZOJ1828[USACO 2010 Mar Gold 2.Barn Allocation]——贪心+线段树

    题目描述 输入 第1行:两个用空格隔开的整数:N和M * 第2行到N+1行:第i+1行表示一个整数C_i * 第N+2到N+M+1行: 第i+N+1行表示2个整数 A_i和B_i 输出 * 第一行: ...

  2. BZOJ_1827_[Usaco2010 Mar]gather 奶牛大集会_树形DP

    BZOJ_1827_[Usaco2010 Mar]gather 奶牛大集会_树形DP 题意:Bessie正在计划一年一度的奶牛大集会,来自全国各地的奶牛将来参加这一次集会.当然,她会选择最方便的地点来 ...

  3. 洛谷 P2986 [USACO10MAR]Great Cow Gat…(树形dp+容斥原理)

    P2986 [USACO10MAR]伟大的奶牛聚集Great Cow Gat… 题目描述 Bessie is planning the annual Great Cow Gathering for c ...

  4. BZOJ1785[USACO 2010 Jan Gold 3.Cow Telephones]——贪心

    题目描述 奶牛们建立了电话网络,这个网络可看作为是一棵无根树连接n(1 n 100,000)个节点,节点编号为1 .. n.每个节点可能是(电话交换机,或者电话机).每条电话线连接两个节点.第i条电话 ...

  5. BZOJ1915[USACO 2010 Open Gold 1.Cow Hopscotch]——DP+斜率优化

    题目描述 奶牛们正在回味童年,玩一个类似跳格子的游戏,在这个游戏里,奶牛们在草地上画了一行N个格子,(3 <=N <= 250,000),编号为1..N.就像任何一个好游戏一样,这样的跳格 ...

  6. [USACO 2012 Mar Gold] Large Banner

    传送门:http://www.usaco.org/index.php?page=viewproblem2&cpid=127 又是一道这种题目,遇到一次跪一次,这次终于硬着头皮看懂了题解,但是谢 ...

  7. Usaco 2010 Dec Gold Exercise(奶牛健美操)

    /*codevs 3279 二分+dfs贪心检验 堆版本 re一个 爆栈了*/ #include<cstdio> #include<queue> #include<cst ...

  8. BZOJ1782[USACO 2010 Feb Gold 3.Slowing down]——dfs+treap

    题目描述 每天Farmer John的N头奶牛(1 <= N <= 100000,编号1…N)从粮仓走向他的自己的牧场.牧场构成了一棵树,粮仓在1号牧场.恰好有N-1条道路直接连接着牧场, ...

  9. BZOJ1916[USACO 2010 Open Gold 2.Water Slides]——DP+记忆化搜索

    题目描述 受到秘鲁的马丘比丘的新式水上乐园的启发,Farmer John决定也为奶牛们建 一个水上乐园.当然,它最大的亮点就是新奇巨大的水上冲浪.超级轨道包含 E (1 <= E <=15 ...

随机推荐

  1. php和js字符串的acsii码函数

    简单普及下编码知识: javascript中有charCodeAt(),根据字符查找ascii码. String.fromCharCode(),根据ascii码查找对应的字符. console.log ...

  2. ASP.NET Core中获取完整的URL(转载)

    在之前的ASP.NET中,可以通过 Request.Url.AbsoluteUri 获取,但在ASP.NET Core没有这个实现,请问如何获取呢?方法一:先引用“using Microsoft.As ...

  3. 阿里云ECS服务器折腾记(一):小白入门遇到的各类问题

    上周日折腾了一次阿里云服务器,被linux的网络问题折腾的够呛.在这里简单做个问题的概要记录,以备忘.题目中说自己是小白,其实也不完全是小白,自己对一些linux的常用命令还是有所了解的,但是对于li ...

  4. Vue-Vue列表渲染v-for

    v-for 指令需要以 site in sites 形式的特殊语法 一.v-for 循环数组 HTML代码 <div id="app"> <ul> < ...

  5. How to Enable TLS 1.2 on Windows Server 2008 R2 and IIS 7.5

    Nowadays there is an SSL vulnerability called POODLE discovered by Google team in SSLv3 protocol. So ...

  6. libgdx学习记录27——线段与线段相交检测

    给定p1, p2, p3, p4四个点,p1,p2为一条线段,p3,p4为一条线段,检测其是否有交点. 可分为三种情况: 1. L2与x轴平行 2. L2与y轴平行 3. L2与坐标轴不平行. (L1 ...

  7. Linq 之 Select 和 where 的用法

    最近开始学习linq.自己也总结一下,方便以后查阅. Select 同 Sql 中的 select 类似,即输出我们要的东东,感觉在 linq 中更加强大. Linq 可以对集合如数组.泛型等操作,这 ...

  8. SpringMvc返回Json调试

    spring-web-5.0.6.RELEASE.jar!/org/springframework/web/method/support/HandlerMethodReturnValueHandler ...

  9. Visual Studio2013安装过程以及单元测试

    一.安装环境 操作系统版本:Windows10家庭中文版64位 CPU:i5-4200u  1.60GHz 硬盘内存:750G 二.安装版本 Visual Studio2013 三.安装过程 Visu ...

  10. Linux内核分析第四章读书笔记

    第四章 进程调度 进程调度程序:确保进程能有效工作的一个内核子程序 决定将哪个进程投入运行,何时运行已经运行多长时间 进程调度程序可看做在可运行态进程之间分配有限的处理器时间资源的内核子系统 原则:只 ...