In computer science, a heap is a specialized tree-based data structure that satisfies the heap property: if P is a parent node of C, then the key (the value) of P is either greater than or equal to (in a max heap) or less than or equal to (in a min heap) the key of C. A common implementation of a heap is the binary heap, in which the tree is a complete binary tree. (Quoted from Wikipedia at https://en.wikipedia.org/wiki/Heap_(data_structure))

One thing for sure is that all the keys along any path from the root to a leaf in a max/min heap must be in non-increasing/non-decreasing order.

Your job is to check every path in a given complete binary tree, in order to tell if it is a heap or not.

Input Specification:

Each input file contains one test case. For each case, the first line gives a positive integer N (1<N≤1,000), the number of keys in the tree. Then the next line contains N distinct integer keys (all in the range of int), which gives the level order traversal sequence of a complete binary tree.

Output Specification:

For each given tree, first print all the paths from the root to the leaves. Each path occupies a line, with all the numbers separated by a space, and no extra space at the beginning or the end of the line. The paths must be printed in the following order: for each node in the tree, all the paths in its right subtree must be printed before those in its left subtree.

Finally print in a line Max Heap if it is a max heap, or Min Heap for a min heap, or Not Heap if it is not a heap at all.

Sample Input 1:

8
98 72 86 60 65 12 23 50

Sample Output 1:

98 86 23
98 86 12
98 72 65
98 72 60 50
Max Heap

Sample Input 2:

8
8 38 25 58 52 82 70 60

Sample Output 2:

8 25 70
8 25 82
8 38 52
8 38 58 60
Min Heap

Sample Input 3:

8
10 28 15 12 34 9 8 56

Sample Output 3:

10 15 8
10 15 9
10 28 34
10 28 12 56
Not Heap

#include <stdio.h>
#include <algorithm>
#include <set>
#include <vector>
#include <string>
#include <iostream>
#include <queue>
using namespace std;
const int maxn=;
int tree[maxn] ;
int n;
vector<int> v;
void dfs(int st){
v.push_back(tree[st]);
if(st*>n){
if(st<=n){
for(int i=;i<v.size();i++){
printf("%d%s",v[i],i!=v.size()-?" ":"\n");
}
}
}
else{
//v.push_back(tree[st*2+1]);
dfs(st*+);
//v.pop_back();
//v.push_back(tree[st*2]);
dfs(st*); }
v.pop_back();
}
int main(){
scanf("%d",&n);
int ismax=,ismin=;
for(int i=;i<=n;i++){
scanf("%d",&tree[i]);
}
dfs();
for(int i=;i<=n;i++){
if(tree[i/]>tree[i])ismin=;
if(tree[i/]<tree[i])ismax=;
}
if(ismin==)printf("Min Heap\n");
else{
printf("%s\n",ismax==?"Max Heap":"Not Heap");
} }

注意点:完全二叉树可以直接用数组存储,根节点下标为1,左子节点为2*root,右子节点2*root+1,当当前节点的左子节点编号大于n时,该节点即为叶节点。当节点下标大于n时,这个节点为空节点。

路径遍历用dfs实现,用一个vector控制路径上的值,每递归一次记得弹出

PAT A1155 Heap Paths (30 分)——完全二叉树,层序遍历,特定dfs遍历的更多相关文章

  1. PAT甲级 1155 Heap Paths (30分) 堆模拟

    题意分析: 给出一个1000以内的整数N,以及N个整数,并且这N个数是按照完全二叉树的层序遍历输出的序列,输出所有的整条的先序遍历的序列(根 右 左),以及判断整棵树是否是符合堆排序的规则(判断是大顶 ...

  2. PAT Advanced 1155 Heap Paths (30 分)

    In computer science, a heap is a specialized tree-based data structure that satisfies the heap prope ...

  3. PAT 甲级 1147 Heaps (30 分) (层序遍历,如何建树,后序输出,还有更简单的方法~)

    1147 Heaps (30 分)   In computer science, a heap is a specialized tree-based data structure that sati ...

  4. PAT Advanced 1155 Heap Paths (30) [DFS, 深搜回溯,堆]

    题目 In computer science, a heap is a specialized tree-based data structure that satisfies the heap pr ...

  5. [PAT] 1147 Heaps(30 分)

    1147 Heaps(30 分) In computer science, a heap is a specialized tree-based data structure that satisfi ...

  6. PAT 甲级1057 Stack (30 分)(不会,树状数组+二分)*****

    1057 Stack (30 分)   Stack is one of the most fundamental data structures, which is based on the prin ...

  7. PAT 1004 Counting Leaves (30分)

    1004 Counting Leaves (30分) A family hierarchy is usually presented by a pedigree tree. Your job is t ...

  8. PAT A1147 Heaps (30 分)——完全二叉树,层序遍历,后序遍历

    In computer science, a heap is a specialized tree-based data structure that satisfies the heap prope ...

  9. PAT 垃圾箱分布(30分)dijstra

    垃圾箱分布 时间限制 200 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 作者 陈越 大家倒垃圾的时候,都希望垃圾箱距离自己比较近,但是谁都不愿意守着垃圾 ...

随机推荐

  1. canvas-2drawRectFun.html

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  2. Redis 入门 安装 命令

    win7 64位安装redis 及Redis Desktop Manager使用 引自:http://blog.csdn.net/joyhen/article/details/47358999 写基于 ...

  3. Oracle绑定变量在C#.NET中的应用及意义

    一. 什么是绑定变量 绑定变量(bind variable) : select * from emp where empno=:empno; 是用户放入查询中的占位符,它会告诉Oracle“我会随后为 ...

  4. C# 插件式开发

    在网上找了下插件式编程的资料,这里自己先借鉴下别人的,同时发现有自己的看法,不过由于本人水平有限,不一定有参考价值,写出来一方面是为了总结自己,以求提高,另一方面也希望各为朋友看到我的不足,给我提出宝 ...

  5. Android BitmapUtils工具类

    Bitmap工具类 public final class BitmapUtils { public static final String TAG = "BitmapUtil"; ...

  6. 数组中的逆序对(Java实现)

    来源:剑指offer 逆序对定义:a[i]>a[j],其中i<j 思路:利用归并排序的思想,先求前面一半数组的逆序数,再求后面一半数组的逆序数,然后求前面一半数组比后面一半数组中大的数的个 ...

  7. maven——依赖管理

    管理包依赖是 Maven 核心功能之一,下面通过如何引入 jar 包:如何解析 jar 包依赖:包冲突是如何产生:如何解决包冲突:依赖管理解决什么问题:什么是依赖范围:使用包依赖的最佳实践等 6 个问 ...

  8. g4e基础篇#1 为什么要使用版本控制系统

    g4e 是 Git for Enterprise Developer的简写,这个系列文章会统一使用g4e作为标识,便于大家查看和搜索. 章节目录 前言 1. 基础篇: 为什么要使用版本控制系统 Git ...

  9. Spring Boot Actuator认识

    概述 spring-boot-starter-actuator:是一个用于暴露自身信息的模块,主要用于监控与管理. 为了保证actuator暴露的监控接口的安全性,需要添加安全控制的依赖spring- ...

  10. Appium学习——安装appium Server

    安装appium Server 下载地址:百度网盘的下载链接:https://pan.baidu.com/s/1pKMwdfX 下载后, AppiumForWindows.zip 进行解压,点击 ap ...