python descriptor 详解
descriptor简介
这三个特殊的函数签名是这样的:
object.
__get__
(self, instance, owner):return value
object.
__set__
(self, instance, value):return None
object.
__delete__
(self, instance): return None
# -*- coding: utf-8 -*-
class Des(object):
def __init__(self, init_value):
self.value = init_value def __get__(self, instance, typ):
print('call __get__', instance, typ)
return self.value def __set__(self, instance, value):
print ('call __set__', instance, value)
self.value = value def __delete__(self, instance):
print ('call __delete__', instance) class Widget(object):
t = Des(1) def main():
w = Widget()
print type(w.t)
w.t = 1
print w.t, Widget.t
del w.t if __name__=='__main__':
main()
运行结果如下:
('call __get__', <__main__.Widget object at 0x02868570>, <class '__main__.Widget'>)
<type 'int'>('call __set__', <__main__.Widget object at 0x02868570>, 1)
('call __get__', <__main__.Widget object at 0x02868570>, <class '__main__.Widget'>)
1 ('call __get__', None, <class '__main__.Widget'>)1
('call __delete__', <__main__.Widget object at 0x02868570>)
从输出结果可以看到,对于这个三个特殊函数,形参instance是descriptor实例所在的类的实例(w), 而形参owner就是这个类(widget)
descriptor注意事项
需要注意的是, descriptor的实例一定是类的属性,因此使用的时候需要自行区分实例。比如下面这个例子,我们需要保证以下属性不超过一定的阈值。
class MaxValDes(object):
def __init__(self, inti_val, max_val):
self.value = inti_val
self.max_val = max_val def __get__(self, instance, typ):
return self.value def __set__(self, instance, value):
self.value= min(self.max_val, value) class Widget(object):
a = MaxValDes(0, 10) if __name__ == '__main__':
w0 = Widget()
print 'inited w0', w0.a
w0.a = 123
print 'after set w0',w0.a
w1 = Widget()
print 'inited w1', w1.a
代码很简单,我们通过MaxValDes这个descriptor来保证属性的值不超过一定的范围。运行结果如下:
inited w0 0
after set w0 10
inited w1 10
可以看到,对w0.a的赋值符合预期,但是w1.a的值却不是0,而是同w0.a一样。这就是因为,a是类Widget的类属性, Widget的实例并没有'a'这个属性,可以通过__dict__查看。
那么要怎么修改才符合预期呢,看下面的代码:
class MaxValDes(object):
def __init__(self, attr, max_val):
self.attr = attr
self.max_val = max_val def __get__(self, instance, typ):
return instance.__dict__[self.attr] def __set__(self, instance, value):
instance.__dict__[self.attr] = min(self.max_val, value) class Widget(object):
a = MaxValDes('a', 10)
b = MaxValDes('b', 12)
def __init__(self):
self.a = 0
self.b = 1 if __name__ == '__main__':
w0 = Widget()
print 'inited w0', w0.a, w0.b
w0.a = 123
w0.b = 123
print 'after set w0',w0.a, w0.b w1 = Widget()
print 'inited w1', w1.a, w1.b
运行结果如下:
inited w0 0 1
after set w0 10 12
inited w0 0 1
可以看到,运行结果比较符合预期,w0、w1两个实例互不干扰。上面的代码中有两点需要注意:
第一:第7、10行都是通过instance.__dict__来取值、赋值,而不是调用getattr、setattr,否则会递归调用,死循环。
第二:现在类和类的实例都拥有‘a’属性,不过w0.a调用的是类属性‘a',具体原因参见下一篇文章
descriptor应用场景
They are the mechanism behind properties, methods, static methods, class methods, and
super()
. They are used throughout Python itself to implement the new style classes introduced in version 2.2.
class TestProperty(object):
def __init__(self):
self.__a = 1 @property
def a(self):
return self.__a @a.setter
def a(self, v):
print('output call stack here')
self.__a = v if __name__=='__main__':
t = TestProperty()
print t.a
t.a = 2
print t.a
如果需要禁止对属性赋值,或者对新的值做检查,也很容易修改上面的代码实现
既然有了property,那什么时候还需要descriptor呢?property最大的问题在于不能重复使用,即对每个属性都需要property装饰,代码重复冗余。而使用descriptor,把相同的逻辑封装到一个单独的类,使用起来方便多了。详细的示例可以参见这篇文章。
import functools, time
class cached_property(object):
""" A property that is only computed once per instance and then replaces
itself with an ordinary attribute. Deleting the attribute resets the
property. """ def __init__(self, func):
functools.update_wrapper(self, func)
self.func = func def __get__(self, obj, cls):
if obj is None: return self
value = obj.__dict__[self.func.__name__] = self.func(obj)
return value class TestClz(object):
@cached_property
def complex_calc(self):
print 'very complex_calc'
return sum(range(100)) if __name__=='__main__':
t = TestClz()
print '>>> first call'
print t.complex_calc
print '>>> second call'
print t.complex_calc
>>> first callvery complex_calc4950>>> second call4950
第一,在访问complex_calc的时候并没有使用函数调用(没有括号);
references
python descriptor 详解的更多相关文章
- Python闭包详解
Python闭包详解 1 快速预览 以下是一段简单的闭包代码示例: def foo(): m=3 n=5 def bar(): a=4 return m+n+a return bar >> ...
- [转] Python Traceback详解
追莫名其妙的bugs利器-mark- 转自:https://www.jianshu.com/p/a8cb5375171a Python Traceback详解 刚接触Python的时候,简单的 ...
- python 数据类型详解
python数据类型详解 参考网址:http://www.cnblogs.com/linjiqin/p/3608541.html 目录1.字符串2.布尔类型3.整数4.浮点数5.数字6.列表7.元组8 ...
- Python 递归函数 详解
Python 递归函数 详解 在函数内调用当前函数本身的函数就是递归函数 下面是一个递归函数的实例: 第一次接触递归函数的人,都会被它调用本身而搞得晕头转向,而且看上面的函数调用,得到的结果会 ...
- python线程详解
#线程状态 #线程同步(锁)#多线程的优势在于可以同时运行多个任务,至少感觉起来是这样,但是当线程需要共享数据时,可能存在数据不同步的问题. #threading模块#常用方法:'''threadin ...
- python数据类型详解(全面)
python数据类型详解 目录1.字符串2.布尔类型3.整数4.浮点数5.数字6.列表7.元组8.字典9.日期 1.字符串1.1.如何在Python中使用字符串a.使用单引号(')用单引号括起来表示字 ...
- Python Collections详解
Python Collections详解 collections模块在内置数据结构(list.tuple.dict.set)的基础上,提供了几个额外的数据结构:ChainMap.Counter.deq ...
- python生成器详解
1. 生成器 利用迭代器(迭代器详解python迭代器详解),我们可以在每次迭代获取数据(通过next()方法)时按照特定的规律进行生成.但是我们在实现一个迭代器时,关于当前迭代到的状态需要我们自己记 ...
- 转 python数据类型详解
python数据类型详解 目录 1.字符串 2.布尔类型 3.整数 4.浮点数 5.数字 6.列表 7.元组 8.字典 9.日期 1.字符串 1.1.如何在Python中使用字符串 a.使用单引号(' ...
随机推荐
- Harbor 搭建
环境:centos7.4 docker-ce 18.06.0-ce docker-compose version 1.18.0 harbor 版本: 1.5.2 harbor 安装参考 https:/ ...
- PHP会话(Session)实现用户登陆功能 转自#落人间#
对比起 Cookie,Session 是存储在服务器端的会话,相对安全,并且不像 Cookie 那样有存储长度限制,本文简单介绍 Session 的使用. 由于 Session 是以文本文件形式存储在 ...
- Fragment问题集
最近做一个APP ,因为在慕课网上学习到了新的方法来做Tab(APP主界面)效果,所以刚学不久久用起来了 用的Fragment实现Tab方法 查询了一下午的安卓资料,关于这个东西是在安卓3.0以后的 ...
- 《Inside C#》笔记(七) Attribute
Attribute特性可以说是具有开创新的意义,因为一般的语言在被设计出来后,它所具有的能力就已经固定了.而借助Attribute特性,我们可以为C#已有的类型附加信息,既可以在编程时(design- ...
- system.transfer.list深度解析
system.transfer.list system.new.dat 很明显,通过名字我们就知道这两个文件的作用,system.new.dat为数据部分,system.transfer.list为 ...
- JS笔记(二):对象
(一) 对象 对象是JS的基本数据类型,类似于python的字典.然而对象不仅仅是键值对的映射,除了可以保持自有的属性,JS对象还可以从一个称为原型的对象继承属性,对象的方法通常是继承的属性.(这种对 ...
- [20171225]变态的windows批处理4.txt
[20171225]变态的windows批处理4.txt --//昨天学习windows 批处理的echo &.使用它可以实现类似回车换行的功能.例子: 1.echo &.R:\> ...
- 自己搭建anki同步服务器
最近帮孩子找学习的软件,发现了anki 不过同步速度太慢,但发现可以自己搭建同步服务器 具体方法见https://github.com/dsnopek/anki-sync-server 我的安装过程如 ...
- python中常用函数整理
1.map map是python内置的高阶函数,它接收一个函数和一个列表,函数依次作用在列表的每个元素上,返回一个可迭代map对象. class map(object): ""&q ...
- python第三天 变量 作业
作业1,模拟登陆:1. 用户输入帐号密码进行登陆2. 用户信息保存在文件内3. 用户密码输入错误三次后锁定用户 使用文件:user_file.txt 用户列表文件. 格式:{'张三':'12 ...