【CF715E】Complete the Permutations(容斥,第一类斯特林数)
【CF715E】Complete the Permutations(容斥,第一类斯特林数)
题面
CF
洛谷
给定两个排列\(p,q\),但是其中有些位置未知,用\(0\)表示。
现在让你补全两个排列,定义两个排列\(p,q\)之间的距离为每次选择\(p\)中两个元素交换,使其变成\(q\)的最小次数。
求距离恰好为\([0,n-1]\)的填数方案数。
加强的题目在\(BZOJ\)上有,戳这里。
题解
看到这道题目就觉得无比熟悉。回头翻了翻发现果然是省队集训的时候的题目。。。
果然都是原题啊。。。
如果排列已知,发现交换的最小次数显然就是沿着置换交换,交换次数为\(n-\)置换个数。那么考虑从\(p_i\)连边连向\(q_i\),那么要求的就是环的个数。
显然成链的中间的\(x-x\)边全部可以直接丢掉,那么只需要考虑最终的开头和结尾就知道这条链到底是什么类型的了。
那么边有四种:已知-已知,已知-\(0\),\(0\)-已知,\(0\)-\(0\)。
对于已经成环的部分,我们显然不需要再考虑的。那么我们要做的就是把已经存在的链给合并成环,还要凭空用\(0-0\)边构造出一些环。
设有\(k\)条链,\(x-0\)和\(0-x\)是分开考虑的,设\(g_i\)表示至少有\(i\)个环。
\]
其中\(m\)是\(0-0\)边的数量。
这里拿\(x-0\)边举例。首先选择若干个\(x-0\)边出来拼成\(x\)个环,枚举使用的边的个数组合数计算方案,然后把他们拼成环,环排列个数即第一类斯特林数。多出来的边随意拼接,显然他们需要找一个后继,即把\(0\)位置和另外一条边给拼起来,无论是选择另外一个\(0-0\)边来拼或者选择一个\(x-0\)边来拼都是可行的,因为每条边也只会有一个前驱,所以选择方案数是下降幂。\(0-x\)边是同理的。
设\(f_x\)为\(0-x\)边计算出来的恰好的结果,\(g_x\)为\(x-0\)边计算出来的恰好的结果。两者卷积后,得到的是恰好形成了\(x\)环的结果。但是此时还多出了一些\(0-0\)链,它们形成环的方案数还是斯特林数。因此再将卷积的结果和斯特林数卷积。
最终因为\(0-0\)之间无顺序关系,所以还要乘上一个阶乘。
#include<iostream>
#include<cstdio>
using namespace std;
#define MAX 550
#define MOD 998244353
void add(int &x,int y){x+=y;if(x>=MOD)x-=MOD;}
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int n,a[MAX],b[MAX],deg[MAX];
int f[MAX],g[MAX],h[MAX],ans[MAX];
int nt[MAX],cnt[4];
bool vis[MAX<<1];
int C[MAX][MAX],A[MAX][MAX],S[MAX][MAX];
void dfs(int u,int ff)
{
vis[u]=true;
if(nt[u])
{
if(!vis[nt[u]])dfs(nt[u],ff);
else cnt[2]+=1;
}
else
{
if(u>n&&ff>n)cnt[3]+=1;
else if(u<=n&&ff>n)cnt[0]+=1;
else if(u>n&&ff<=n)cnt[1]+=1;
}
}
void calc(int *f,int n)
{
for(int i=0;i<=n;++i)
for(int j=i;j<=n;++j)
add(f[i],1ll*C[n][j]*S[j][i]%MOD*A[n-j+cnt[3]][n-j]%MOD);
for(int i=0;i<=n;++i)
{
int t=0;
for(int j=i,d=1;j<=n;++j,d=MOD-d)
add(t,1ll*d*f[j]%MOD*C[j][i]%MOD);
f[i]=t;
}
}
int main()
{
n=read();
for(int i=1;i<=n;++i)a[i]=read();
for(int i=1;i<=n;++i)b[i]=read();
for(int i=1;i<=n+n;++i)vis[i]=true;
for(int i=1;i<=n;++i)
{
if(!a[i])a[i]=i+n;if(!b[i])b[i]=i+n;
vis[a[i]]=vis[b[i]]=false;
if(a[i]<=n||b[i]<=n)nt[a[i]]=b[i],++deg[b[i]];
}
for(int i=1;i<=n+n;++i)if(!vis[i]&&!deg[i])dfs(i,i);
for(int i=1;i<=n+n;++i)if(!vis[i])dfs(i,i);
C[0][0]=S[0][0]=A[0][0]=1;
for(int i=1;i<=n;++i)
{
A[i][0]=C[i][0]=1;
for(int j=1;j<=i;++j)
{
C[i][j]=(C[i-1][j]+C[i-1][j-1])%MOD;
A[i][j]=1ll*A[i][j-1]*(i-j+1)%MOD;
S[i][j]=(S[i-1][j-1]+1ll*(i-1)*S[i-1][j])%MOD;
}
}
calc(f,cnt[0]);calc(g,cnt[1]);
for(int i=0;i<=n;++i)
for(int j=0;j<=i;++j)
add(h[i],1ll*f[j]*g[i-j]%MOD);
for(int i=0;i<=n;++i)
for(int j=0;j<=i;++j)
add(ans[i],1ll*h[j]*S[cnt[3]][i-j]%MOD);
for(int i=0;i<=n;++i)ans[i]=1ll*ans[i]*A[cnt[3]][cnt[3]]%MOD;
for(int i=0;i<n;++i)printf("%d ",n-i-cnt[2]>=0?ans[n-i-cnt[2]]:0);
puts("");return 0;
}
【CF715E】Complete the Permutations(容斥,第一类斯特林数)的更多相关文章
- UVA11077 Find the Permutations —— 置换、第一类斯特林数
题目链接:https://vjudge.net/problem/UVA-11077 题意: 问n的全排列中多有少个至少需要交换k次才能变成{1,2,3……n}. 题解: 1.根据过程的互逆性,可直接求 ...
- ARC096 E Everything on It [容斥,斯特林数]
Atcoder 一个900分的题耗了我这么久--而且官方题解还那么短--必须纪念一下-- 思路 发现每种元素必须出现两次以上的限制极为恶心,所以容斥,枚举出现0/1次的元素个数分别有几个.设出现1次的 ...
- CF715E Complete the Permutations(第一类斯特林数)
题目 CF715E Complete the Permutations 做法 先考虑无\(0\)排列的最小花费,其实就是沿着置换交换,花费:\(n-\)环个数,所以我们主要是要求出规定环的个数 考虑连 ...
- Codeforces 715E - Complete the Permutations(第一类斯特林数)
Codeforces 题面传送门 & 洛谷题面传送门 神仙题.在 AC 此题之前,此题已经在我的任务计划中躺了 5 个月的灰了. 首先考虑这个最短距离是什么东西,有点常识的人(大雾)应该知道, ...
- 【UVA 11077】 Find the Permutations (置换+第一类斯特林数)
Find the Permutations Sorting is one of the most used operations in real life, where Computer Scienc ...
- CF715E—— Complete the Permutations
传送门:QAQQAQ 题意:给你两个$1$~$n$的排列,0表示该位置数字不确定,两两交换第一个排列中的元素使之变成第二个排列,令$s[x]$表示对于所有不同的两个排列,最少交换次数为$x$的序列有$ ...
- 【HDU 4372】 Count the Buildings (第一类斯特林数)
Count the Buildings Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Othe ...
- 【组合数学:第一类斯特林数】【HDU3625】Examining the Rooms
Examining the Rooms Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Othe ...
- 如何快速求解第一类斯特林数--nlog^2n + nlogn
目录 参考资料 前言 暴力 nlog^2n的做法 nlogn的做法 代码 参考资料 百度百科 斯特林数 学习笔记-by zhouzhendong 前言 首先是因为这道题,才去研究了这个玩意:[2019 ...
随机推荐
- 算法相关——Java排序算法之快速排序(三)
0. 前言 本系列文章将介绍一些常用的排序算法.排序是一个非常常见的应用场景,也是开发岗位面试必问的一道面试题,有人说,如果一个企业招聘开发人员的题目中没有排序算法题,那说明这个企业不是一个" ...
- Bayesian Personalized Ranking 算法解析及Python实现
1. Learning to Rank 1.1 什么是排序算法 为什么google搜索 ”idiot“ 后,会出现特朗普的照片? “我们已经爬取和存储了数十亿的网页拷贝在我们相应的索引位置.因此,你输 ...
- oracle如何导出和导入数据库/表
oracle如何导出和导入数据库/表 oracle如何将项目中的表导出后在导入自己的数据库中,这是一个完整的操作,对于数据库备份或在本地查看数据验证数据进场用到,一般情况下我都用dos黑窗口进行操作, ...
- 利用阿里云的源yum方式安装Mongodb
今天在线上服务器上安装MongoDB,从Mongo官网直接下载链接,结果在下载时发觉速度慢的可怜.迫于无奈,只能找国内的镜像下载.这里选择阿里云的源进行安装,记录如下: 1)在/etc/yum.rep ...
- nginx+tpmcat+redis实现session共享
nginx+tpmcat+redis实现session共享 版本:nginx nginx-1.8.0.tar.gztomcat apache-tomcat-7.0.78.tar.gzredis re ...
- Java基础实践一:for关键字的实现原理
Java源码: /** * Demo.java * com.yuanchuangyun.libra.web * * * ver date author * ────────────────────── ...
- From CORBA technology To Thrift technology
技术在变,需求不变,把复杂的事情搞简单,而不是相反. 无论CORBA还是Thrift,目标只有一个:一处定义,多处使用,解决的问题只有一个:规范和简化客户端与服务器的通信的开发工作. 是不是和java ...
- 使用非服务器磁盘(MBROnly)安装ESXi时的方法.
From ESXi 5.0, if you install ESXi to a empty hard disk, the target disk will be prepared with GPT-b ...
- Qt__输入对话框(QInputDialog)
#include <QInputDialog> ...... bool isOK; QString text = QInputDialog::getText(NULL, "Inp ...
- SLAM中的变换(旋转与位移)表示方法
1.旋转矩阵 注:旋转矩阵标题下涉及到的SLAM均不包含位移. 根据同一点P在不同坐标系下e(e1,e2,e3)e'(e1',e2',e3')的坐标a(a1,a2,a3)a'(a1',a2',a3') ...