MT【213】二次曲线系方程
(2013北大夏令营)
函数$y=x^2+ax+b$与坐标轴交于三个不同的点$A,B,C$,已知$\Delta ABC$的外心$P$在$y=x$上,求$a+b$的值.

解:由二次曲线系知识知三角形的外接圆方程:
$x^2+ax+b-y+y(y-b)=0$,由题意圆心在$y=x$上,故$\dfrac{-a}{2}=\dfrac{b+1}{2}$,即$a+b=-1$
MT【213】二次曲线系方程的更多相关文章
- MT【246】方程根$\backsim$图像交点
已知函数$f(x)=x^2+x-2$,若$g(x)=|f(x)|-f(x)-2mx-2m^2$ 有三个不同的零点,则$m$的取值范围_____ 分析:等价于$h(x)=|f(x)|-f(x),t(x) ...
- matlab练习程序(螺线拟合)
这里待拟合的螺线我们选择阿基米德螺线,对数螺线类似. 螺线的笛卡尔坐标系方程为: 螺线从笛卡尔坐标转为极坐标方程为: 阿基米德螺线在极坐标系下极径r和极角theta为线性关系,方程为: 计 ...
- bzoj 3751: [NOIP2014]解方程 同余系枚举
3.解方程(equation.cpp/c/pas)[问题描述]已知多项式方程:a ! + a ! x + a ! x ! + ⋯ + a ! x ! = 0求这个方程在[1, m]内的整数解(n 和 ...
- 量子杨-Baxter方程新解系的一般量子偶构造_爱学术 https://www.ixueshu.com/document/f3385115a33571aa318947a18e7f9386.html
量子杨-Baxter方程新解系的一般量子偶构造_爱学术 https://www.ixueshu.com/document/f3385115a33571aa318947a18e7f9386.html
- MT【50】高中曲线系集大成之双切线法
[历史使人聪明,诗歌使人机智,数学使人精细,哲学使人深邃,道德使人严肃,逻辑与修辞使人善辩.--- Bacon,Francis] 练习: 评:这道2011高考题的解析做法参考答案也值得一看,但我这边在 ...
- MT【24】一道五次方程的求根题
解答: 评:一般的五次及以上的多项式方程是无根式解的,只能用计算机去精确到某某位.但是特殊的比如$x^5=1$显然有根式解,本题就是一个不平凡的特殊的例子,这里的代换用于求解三次方程的求根过程是一样的 ...
- MT【76】直线系
解答 :答案是3,4.
- NewtonPrincipia --- 公理或运动的定律 --- 系理二
NewtonPrincipia --- 公理或运动的定律 --- 系理二 自然哲学的数学原理>公理或运动的定律>系理II 平行四边形ABCD,那么:直接的力AD由任意的力AB和BD合成,直 ...
- SPSS—回归—曲线估计方程案例解析
上一节介绍了线性回归,虽然线性回归能够满足大部分的数据分析的要求,但是,线性回归并不是对所有的问题都适用, 因为有时候自变量和因变量是通过一个已知或未知的非线性函数关系相联系的,如果通过函数转换,将关 ...
随机推荐
- Redis详解(八)------ 主从复制
前面介绍Redis,我们都在一台服务器上进行操作的,也就是说读和写以及备份操作都是在一台Redis服务器上进行的,那么随着项目访问量的增加,对Redis服务器的操作也越加频繁,虽然Redis读写速度都 ...
- 一篇文章让你彻底掌握 shell 语言
一篇文章让你彻底掌握 shell 语言 由于 bash 是 Linux 标准默认的 shell 解释器,可以说 bash 是 shell 编程的基础. 本文主要介绍 bash 的语法,对于 linux ...
- Linux下查找进程id并强制停止进程的脚本
Linux下的tomcat的停止脚本shutdown.sh经常失败,造成tomcat进程没关闭.所以只能手动查找进程id,然后用kill命令来强制停止.每次都要这样查一下,然后再杀进程.感觉有点麻烦, ...
- odoo订餐系统之类型设计
这次开发的模块是订餐的类型设计,比如大荤 小荤 蔬菜 米饭 等基本数据.1.设计model类,很简单就一个字段: class MyLunchProductionCategory(osv.Model): ...
- 算法相关——Java排序算法之快速排序(三)
0. 前言 本系列文章将介绍一些常用的排序算法.排序是一个非常常见的应用场景,也是开发岗位面试必问的一道面试题,有人说,如果一个企业招聘开发人员的题目中没有排序算法题,那说明这个企业不是一个" ...
- Webpack 2 视频教程 004 - Webpack 初体验
原文发表于我的技术博客 这是我免费发布的高质量超清「Webpack 2 视频教程」. Webpack 作为目前前端开发必备的框架,Webpack 发布了 2.0 版本,此视频就是基于 2.0 的版本讲 ...
- Haproxy基础知识 -运维小结
开源软件负载均衡器 现在常用的三大开源软件负载均衡器分别是Nginx.LVS.Haproxy. 在之前的文章中已经对比了这三个负载均衡软件, 下面根据自己的理解和使用经验, 再简单说下这三个负载均衡软 ...
- easyUI中textbox或number的数值大小校验
例:textbox里面,要求做两个textbox名字为(A,B),其中两个的数字大小范围是-10~10之间,之后其中A的值必须大于B所填的数字,如果输入错误,则提示出弹出框,并清空数据. <!D ...
- 初学习Qt的一些感悟
最近用Qt写了个人项目,有如下心得(可能有不准确): Qt尽管没有扩展C++语法,但是有额外编译链,每个Q_OBJECT类编译的时候会用moc工具生成另一个meta C++类,之后就是标准C++编译流 ...
- BugPhobia休息篇章:Beta阶段第IX次Scrum Meeting前奏
特别说明:此次Scrum Meeting不计入正式的Scrum Meeting,因此此次工作仅为第IX次Scrum Meeting的前奏,而笔者也首次采用休息篇章作为子命题 0x01 :Scrum ...