MT【213】二次曲线系方程
(2013北大夏令营)
函数$y=x^2+ax+b$与坐标轴交于三个不同的点$A,B,C$,已知$\Delta ABC$的外心$P$在$y=x$上,求$a+b$的值.
解:由二次曲线系知识知三角形的外接圆方程:
$x^2+ax+b-y+y(y-b)=0$,由题意圆心在$y=x$上,故$\dfrac{-a}{2}=\dfrac{b+1}{2}$,即$a+b=-1$
MT【213】二次曲线系方程的更多相关文章
- MT【246】方程根$\backsim$图像交点
已知函数$f(x)=x^2+x-2$,若$g(x)=|f(x)|-f(x)-2mx-2m^2$ 有三个不同的零点,则$m$的取值范围_____ 分析:等价于$h(x)=|f(x)|-f(x),t(x) ...
- matlab练习程序(螺线拟合)
这里待拟合的螺线我们选择阿基米德螺线,对数螺线类似. 螺线的笛卡尔坐标系方程为: 螺线从笛卡尔坐标转为极坐标方程为: 阿基米德螺线在极坐标系下极径r和极角theta为线性关系,方程为: 计 ...
- bzoj 3751: [NOIP2014]解方程 同余系枚举
3.解方程(equation.cpp/c/pas)[问题描述]已知多项式方程:a ! + a ! x + a ! x ! + ⋯ + a ! x ! = 0求这个方程在[1, m]内的整数解(n 和 ...
- 量子杨-Baxter方程新解系的一般量子偶构造_爱学术 https://www.ixueshu.com/document/f3385115a33571aa318947a18e7f9386.html
量子杨-Baxter方程新解系的一般量子偶构造_爱学术 https://www.ixueshu.com/document/f3385115a33571aa318947a18e7f9386.html
- MT【50】高中曲线系集大成之双切线法
[历史使人聪明,诗歌使人机智,数学使人精细,哲学使人深邃,道德使人严肃,逻辑与修辞使人善辩.--- Bacon,Francis] 练习: 评:这道2011高考题的解析做法参考答案也值得一看,但我这边在 ...
- MT【24】一道五次方程的求根题
解答: 评:一般的五次及以上的多项式方程是无根式解的,只能用计算机去精确到某某位.但是特殊的比如$x^5=1$显然有根式解,本题就是一个不平凡的特殊的例子,这里的代换用于求解三次方程的求根过程是一样的 ...
- MT【76】直线系
解答 :答案是3,4.
- NewtonPrincipia --- 公理或运动的定律 --- 系理二
NewtonPrincipia --- 公理或运动的定律 --- 系理二 自然哲学的数学原理>公理或运动的定律>系理II 平行四边形ABCD,那么:直接的力AD由任意的力AB和BD合成,直 ...
- SPSS—回归—曲线估计方程案例解析
上一节介绍了线性回归,虽然线性回归能够满足大部分的数据分析的要求,但是,线性回归并不是对所有的问题都适用, 因为有时候自变量和因变量是通过一个已知或未知的非线性函数关系相联系的,如果通过函数转换,将关 ...
随机推荐
- mysql 5.7 版本的安装
目录 一.概述 二.MySQL安装 三.安装成功验证 四.NavicatforMySQL下载及使用 一.概述 MySQL版本:5.7.17 下载地址:http://rj.baidu.com/soft/ ...
- Luogu3702 SDOI2017 序列计数 矩阵DP
传送门 不考虑质数的条件,可以考虑到一个很明显的$DP:$设$f_{i,j}$表示选$i$个数,和$mod\ p=j$的方案数,显然是可以矩阵优化$DP$的. 而且转移矩阵是循环矩阵,所以可以只用第一 ...
- WPF,ListView设置分组
原文:WPF,ListView设置分组 今天遇到一个问题,就是在ListView中设置分组.想了很久在网上早了些资料作出一个例子. 分组字段也可以在后台中定义: CollectionView view ...
- eclipse 打包
add directory entries 不勾选, spring 自动扫描之类的扫描不到
- WD与循环 组合数学
WD与循环 LG传送门 为什么大家都是先算\(n\)个数的和等于\(m\)的情况再求前缀和? 既然已经想到了插板法,为什么不直接对\(n\)个数的和\(\le m\)的情况做呢? 基本套路没有变:考虑 ...
- Python基础(上)
前言 正式开始Python之旅,主要学习内容专注在爬虫和人工智能领域,如Web开发之类将跳过不研究. Python的意思是蟒蛇,源于作者Guido van Rossum(龟叔)喜欢的一部电视剧.所以现 ...
- [T-ARA][떠나지마][不要离开]
歌词来源:http://music.163.com/#/song?id=22704408 잊기엔 너무 사랑했나봐 [id-ggi-en neo-mu sa-lang-haen-na-bwa] 아직도 ...
- NOIP模拟赛20180917 隐藏题目
给定n个数,值域范围1~n,每个数都不同,求满足所有相邻数不同的排列数.\(n\le 30\). 状压DP很好想,然而我考试时没写出来.对于排列还是有很多转化方法.另外要注意数据范围.
- 实验三 Java敏捷开发与xp实现
实验内容: 1. XP基础 2. XP核心实践 3. 相关工具 实验要求 1.没有Linux基础的同学建议先学习<Linux基础入门(新版)><Vim编辑器> 课程 2.完成实 ...
- 20135323符运锦期中总结----Linux系统的理解及学习心得
一.网易云课堂 1.各章节总结 第一周:计算机是如何工作的http://www.cnblogs.com/20135323fuyunjin/p/5222787.html 第二周:操作系统是如何工作的ht ...