【BZOJ4903】【UOJ#300】吉夫特(卢卡斯定理,动态规划)

题面

UOJ

BZOJ:给的UOJ的链接......

题解

首先模的质数更小了,直接给定了\(2\)。当然是卢卡斯定理了啊。

考虑一个组合数在什么情况下会是一个奇数。\(Lucas(n,m)\equiv Lucas(n/2,m/2)*Lucas(n\%2,m\%2)\)。后面这个东西一共只有\(4\)种取值,我们大力讨论一下:\(C_{0}^0=1,C_{0}^1=0,C_1^0=1,C_1^1=1\)。既然是一个奇数,证明\(n,m\)之中不存在任意两个二进制位满足\(n\)是\(0\),\(m\)是\(1\),即\(n\ and\ m=n\)。

现在是一个不上升子序列的相邻两个元素的组合数之积都要是奇数,那么两两之间都要满足这个情况。设\(f[i]\)表示以\(i\)结尾的所有不上升子序列的所求式子的和,每次转移的时候找一个合法的值然后暴力转移过来。但是这样子是\(O(n^2)\)的,考虑如何优化。首先值域范围很小,我们可以开桶暴力记答案,然而这个数据范围很巧妙,每次对于每个数,我们需要枚举集合,这样子的复杂度是\(O(3^{log n}=3^{18})\),完美的\(TLE\),而\(3^{17}\)的复杂度就是在时间边缘试探。(然而老邬说他\(3^{18}\)大力艹过去了),然而我暴力也过去了。

根据二进制毒瘤做法,我们把二进制数拆分成前一半\(9\)位和后一半\(9\)位,先暴力枚举前\(9\)位,然后对于后\(9\)位再做子集枚举,这样子复杂度就瞬间降下来了。

先放暴力AC代码

#include<iostream>
#include<cstdio>
using namespace std;
#define MAX 250000*2
#define MOD 1000000007
void add(int &x,int y){x+=y;if(x>=MOD)x-=MOD;}
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int s[MAX],a[MAX],n,f[MAX];
int lg[MAX],mx,ans;
int main()
{
n=read();
for(int i=1;i<=n;++i)a[i]=read();
for(int i=1;i<=n;++i)mx=max(mx,a[i]);
for(int i=2;i<=mx;++i)lg[i]=lg[i>>1]+1;
for(int i=1;i<=n;++i)
{
int p=((1<<(lg[mx]+1))-1)^a[i];f[i]=1;
for(int t=p;t;t=(t-1)&p)
add(f[i],s[a[i]|t]);
add(ans,s[a[i]]=f[i]);add(ans,MOD-1);
}
printf("%d\n",ans);
return 0;
}

按照二进制位折半分,大概比上面的暴力快了\(10\)倍的样子。

#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
#define MAX 250000
#define MOD 1000000007
void add(int &x,int y){x+=y;if(x>=MOD)x-=MOD;}
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int s[1<<10][1<<10],a[MAX],n,f[MAX];
int lg,mx,ans,llg;
int main()
{
n=read();for(int i=1;i<=n;++i)mx=max(mx,a[i]=read());
lg=log2(mx)+1;llg=lg/2;
for(int i=1;i<=n;++i)
{
int p=(1<<(lg-llg))-1;
int p1=a[i]>>llg,p2=a[i]-(p1<<llg);
for(int t=p^p1;;t=(t-1)&(p^p1)){add(f[i],s[p1|t][p2]);if(!t)break;}
for(int t=p2;;t=(t-1)&p2){add(s[p1][t],f[i]+1);if(!t)break;}
add(ans,f[i]);
}
printf("%d\n",ans);
return 0;
}

【BZOJ4903】【UOJ#300】吉夫特(卢卡斯定理,动态规划)的更多相关文章

  1. 【CTSC2017】【BZOJ4903】吉夫特 卢卡斯定理 DP

    题目描述 给你一个长度为\(n\)的数列\(a\),求有多少个长度\(\geq 2\)的不上升子序列\(a_{b_1},a_{b_2},\ldots,a_{b_k}\)满足 \[ \prod_{i=2 ...

  2. bzoj4903 & loj2264 [Ctsc2017]吉夫特 Lucas 定理+状压DP

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4903 https://loj.ac/problem/2264 http://uoj.ac/pr ...

  3. 【UOJ#275】组合数问题(卢卡斯定理,动态规划)

    [UOJ#275]组合数问题(卢卡斯定理,动态规划) 题面 UOJ 题解 数据范围很大,并且涉及的是求值,没法用矩阵乘法考虑. 发现\(k\)的限制是,\(k\)是一个质数,那么在大组合数模小质数的情 ...

  4. BZOJ4903 UOJ300 CTSC2017 吉夫特 【Lucas定理】

    BZOJ4903 UOJ300 CTSC2017 吉夫特 弱弱地放上题目链接 Lucas定理可以推一推,发现C(n,m)是奇数的条件是n" role="presentation&q ...

  5. 【BZOJ4403】序列统计(组合数学,卢卡斯定理)

    [BZOJ4403]序列统计(组合数学,卢卡斯定理) 题面 Description 给定三个正整数N.L和R,统计长度在1到N之间,元素大小都在L到R之间的单调不降序列的数量.输出答案对10^6+3取 ...

  6. 【Luogu3807】【模板】卢卡斯定理(数论)

    题目描述 给定\(n,m,p(1≤n,m,p≤10^5)\) 求 \(C_{n+m}^m mod p\) 保证\(P\)为\(prime\) \(C\)表示组合数. 一个测试点内包含多组数据. 输入输 ...

  7. 【数论】卢卡斯定理模板 洛谷P3807

    [数论]卢卡斯定理模板 洛谷P3807 >>>>题目 [题目] https://www.luogu.org/problemnew/show/P3807 [输入格式] 第一行一个 ...

  8. 【XSY2691】中关村 卢卡斯定理 数位DP

    题目描述 在一个\(k\)维空间中,每个整点被黑白染色.对于一个坐标为\((x_1,x_2,\ldots,x_k)\)的点,他的颜色我们通过如下方式计算: 如果存在一维坐标是\(0\),则颜色是黑色. ...

  9. 卢卡斯定理&扩展卢卡斯定理

    卢卡斯定理 求\(C_m^n~mod~p\) 设\(m={a_0}^{p_0}+{a_1}^{p_1}+\cdots+{a_k}^{p_k},n={b_0}^{p_0}+{b_1}^{p_1}+\cd ...

随机推荐

  1. Ionic Android项目Splash设置

    ionic项目中,在splashscreen消失后会出现零点几秒的白屏,再出现app页面. 1. 安装Cordova splash screen插件 ionic plugin add org.apac ...

  2. spring boot配置统一异常处理

    基于@ControllerAdvice的统一异常处理 >.这里ServerException是我自定义的异常,和普通Exception分开处理 >.这里的RequestResult是我自定 ...

  3. RNN介绍,较易懂

    人类并不是每时每刻都从一片空白的大脑开始他们的思考.在你阅读这篇文章时候,你都是基于自己已经拥有的对先前所见词的理解来推断当前词的真实含义.我们不会将所有的东西都全部丢弃,然后用空白的大脑进行思考.我 ...

  4. pandas:字段值插入数据表第一行的解决办法

    1. 问题描述 在对课程表进行数据抽取时,由于课表结构的原因,需要在原始表字段名作为第一行数据,并对原始字段名进行替换. 原始数据如下所示: 2. 解决办法 经思考,此问题可抽象为:在不影响原始数据的 ...

  5. libgdx学习记录27——线段与线段相交检测

    给定p1, p2, p3, p4四个点,p1,p2为一条线段,p3,p4为一条线段,检测其是否有交点. 可分为三种情况: 1. L2与x轴平行 2. L2与y轴平行 3. L2与坐标轴不平行. (L1 ...

  6. Microsoft Visual Studio2013安装及单元测试

    和大家分享一下我安装VS2013和单元测试的过程.VS是微软多种编程软件的集合,功能与工作环境更全面,相比VC++6.0来说是一个很大的提升. VS安装: VS的安装和普通软件相同,只是花费的时间很长 ...

  7. 5-Python3从入门到实战—基础之数据类型(列表-List)

    Python从入门到实战系列--目录 列表定义 list:列表(list)是Python内置的一种数据类型,list是一种有序的集合,索引从0开始,可以进行截取.组合等: //创建列表 list1 = ...

  8. shell脚本--制作自己的服务脚本

    首先注意一下,我用的环境是centos6.5,中间有一些操作和在Ubuntu上有一些地方的操作是不同的, 编写脚本 首先看一个实例:假设有一个test的服务,可以通过命令对test进行启动.关闭或者重 ...

  9. TFS2018 linux Agent的安装

    1. 感谢徐蕾老师的文档,根据文档简单学会了TFS agent的安装,在此简单记录一下: 前置条件: CentOS7.4 or CentOS7.5的版本 安装的软件有git 2.17 dotnet s ...

  10. ESXi虚拟机出现关机时卡住的问题处理

    1. ESXi在日常使用时经常会遇到机器卡住的情况 这种情况下GUI的方式无从下手, 需要从cli的方式处理 我记得之前写过一个 但是不知道放哪里去了. 再重新写一下. 直接按照图处理 2. 然后xs ...