参考博客:

http://blog.csdn.net/jacke121/article/details/78160398

以视网膜血管分割的数据集为例:

训练样本:

训练标签:

标签图的制作依据voc数据集中的样例,将被检测的目标改为voc中的一类。

将用ps软件制作的黑底白色标签转化为,目标为(128,0,0)的单通道彩色图片,存储格式为.png。也就是将待分割的目标当做飞机。

转化png的matlab的代码如下:

imgname='15.jpg';
I=imread(imgname);
I_gray=rgb2gray(I);
I_bw=uint8(im2bw(I_gray))*128;
I1=uint8(zeros(size(I,1),size(I,2),3));
I1(:,:,1)=I_bw;
[x,map]=rgb2ind(I1,256);
imgSaveName=imgname(1:length(imgname)-4);
imwrite(x,map,strcat(imgSaveName,'.png'));

制作好训练集后,修改一些文件中的路径。

我的工程路径:

I:\caffe171101\caffe-master\fcn-master\retina200-fcn32s

I:\caffe171101\caffe-master\fcn-master\data\retina200_200

voc_layers.py修改:

可以删掉底下的class SBDDSegDataLayer(caffe.Layer)   训练的时候用不到。

修改这三个地方的路径即可。

train.prototxt修改:

这个mean,就是计算训练样本RGB三通道的平均值。

将后面的num_output:21  全部改为num_output:2      只有背景和待分割的目标两类。

val.prototxt的修改同理。

deploy_voc_32s.prototxt  不变

solver.prototxt  不需要改动

因为是第一次训练,采用fcn32s-heavy-pascal.caffemodel作为预训练模型。

solve.py

import caffe
import surgery, score import numpy as np
import os
import sys try:
import setproctitle
setproctitle.setproctitle(os.path.basename(os.getcwd()))
except:
pass weights = 'fcn32s-heavy-pascal.caffemodel'
deploy_proto = 'deploy_voc_32s.prototxt' # init
caffe.set_device(int(0))
caffe.set_mode_gpu() solver = caffe.SGDSolver('solver.prototxt')
#solver.net.copy_from(weights)
vgg_net=caffe.Net(deploy_proto,weights,caffe.TRAIN)
surgery.transplant(solver.net,vgg_net)
del vgg_net # surgeries
interp_layers = [k for k in solver.net.params.keys() if 'up' in k]
surgery.interp(solver.net, interp_layers) # scoring
val = np.loadtxt('../data/retina200_200/val.txt', dtype=str) for _ in range(50):
solver.step(2000)
score.seg_tests(solver, False, val, layer='score')

必须采用transplant的方式训练。因为这个模型的网络中的图片尺寸和自己的数据集中的图片尺寸不一样。

训练完成之后,进行预测时,这个deploy.prototxt文件需要改动一下。

将其中num_output:21的地方全部改为num_output:21

实验结果:

  

fcn+caffe+制作自己的数据集的更多相关文章

  1. fcn+caffe+siftflow实验记录

    环境搭建: vs2013,编译caffe工程,cuda8.0,cudnn5.1,python2.7. 还需要安装python的一些包.Numpy+mkl  scipy  matplotlib  sci ...

  2. 自动化工具制作PASCAL VOC 数据集

    自动化工具制作PASCAL VOC 数据集   1. VOC的格式 VOC主要有三个重要的文件夹:Annotations.ImageSets和JPEGImages JPEGImages 文件夹 该文件 ...

  3. matlab遍历文件制作自己的数据集 .mat文件

    原文作者:aircraft 原文地址:https://www.cnblogs.com/DOMLX/p/9115788.html 看到深度学习里面的教学动不动就是拿MNIST数据集,或者是IMGPACK ...

  4. 仿照CIFAR-10数据集格式,制作自己的数据集

    本系列文章由 @yhl_leo 出品,转载请注明出处. 文章链接: http://blog.csdn.net/yhl_leo/article/details/50801226 前一篇博客:C/C++ ...

  5. SSD-tensorflow-2 制作自己的数据集

    VOC2007数据集格式: VOC2007详细介绍在这里,提供给大家有兴趣作了解.而制作自己的数据集只需用到前三个文件夹,所以请事先建好这三个文件夹放入同一文件夹内,同时ImageSets文件夹内包含 ...

  6. Windows10+YOLOv3实现检测自己的数据集(1)——制作自己的数据集

    本文将从以下三个方面介绍如何制作自己的数据集 数据标注 数据扩增 将数据转化为COCO的json格式 参考资料 一.数据标注 在深度学习的目标检测任务中,首先要使用训练集进行模型训练.训练的数据集好坏 ...

  7. fcn+caffe+voc2012实验记录

    参考博客: http://blog.csdn.net/haoji007/article/details/77148374 http://blog.csdn.net/jacke121/article/d ...

  8. caffe训练自己的数据集

    默认caffe已经编译好了,并且编译好了pycaffe 1 数据准备 首先准备训练和测试数据集,这里准备两类数据,分别放在文件夹0和文件夹1中(之所以使用0和1命名数据类别,是因为方便标注数据类别,直 ...

  9. Mask-RCNN:教你如何制作自己的数据集进行像素级的目标检测

    概述 Mask-RCNN,是一个处于像素级别的目标检测手段.目标检测的发展主要历程大概是:RCNN,Fast-RCNN,Fster-RCNN,Darknet,YOLO,YOLOv2,YOLO3(参考目 ...

随机推荐

  1. Golang go get第三方库的坑

    在树莓派上go get fail的问题记录及解决方案 go get github.com/terrancewong/serial # 错误为GOPATH路径的问题 cannot find packag ...

  2. andorid证书生成

    首先得有JDK DOS窗口切换到证书要保存的目录 keytool -genkey -alias mykey -keyalg RSA -validity 40000 -keystore demo.key ...

  3. post body 传输参数

    postman 示例: 请求地址:http://member-system-api.dd01.work/api/inApp 设置headers头:Content-Type       applicat ...

  4. ES6 迭代器

    Iterator Iterator 是 ES6 引入的一种新的遍历机制,迭代器有两个核心概念: 迭代器是一个统一的接口,它的作用是使各种数据结构可被便捷的访问,它是通过一个键为Symbol.itera ...

  5. SpringMVC(四):什么是HandlerAdapter

    一.什么是HandlerAdapter Note that a handler can be of type Object. This is to enable handlers from other ...

  6. SQLAlchemy(包含有Flask-Migrate知识点)

    what's the SQLAlchemy SQLAlchemy是一个基于Python实现的ORM框架.该框架建立在 DB API之上,使用关系对象映射进行数据库操作,简言之便是:将类和对象转换成SQ ...

  7. python笔记-文件读写

    文件操作过程一般为:打开.读写.关闭: 打开:open()或file() 读写:read().write(): 关闭:close(): 1.打开:open()或file() file_handler= ...

  8. git pull 冲突拉取不到新的代码

    本地文件已经有冲突或者在pull的过程中拉取的文件和本地文件冲突时,拉取不到新的代码,git pull出现报错,如下: 这个时候,如果你有两种选择,如果你需要这些改动,那个你就需要手动解决冲突,然后a ...

  9. python安装simplejson

    import simplejson 报错:ImportError: No module named simplejson simplejson是ansible一个很重要的依赖,经测试在python 2 ...

  10. 【Checkio Exercise】Three Point Circle

    计算三角形外接圆的函数: Three Point Circle If we want to build new silos, then we need to make more formal and ...