Smallest Minimum Cut

Time Limit: 2000/2000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)
Total Submission(s): 1181    Accepted Submission(s): 473

Problem Description
Consider a network G=(V,E) with source s and sink t. An s-t cut is a partition of nodes set V into two parts such that s and t belong to different parts. The cut set is the subset of E with all edges connecting nodes in different parts. A minimum cut is the one whose cut set has the minimum summation of capacities. The size of a cut is the number of edges in the cut set. Please calculate the smallest size of all minimum cuts.
 
Input
The input contains several test cases and the first line is the total number of cases T (1≤T≤300).
Each case describes a network G, and the first line contains two integers n (2≤n≤200) and m (0≤m≤1000) indicating the sizes of nodes and edges. All nodes in the network are labelled from 1 to n.
The second line contains two different integers s and t (1≤s,t≤n) corresponding to the source and sink.
Each of the next m lines contains three integers u,v and w (1≤w≤255) describing a directed edge from node u to v with capacity w.
 
Output
For each test case, output the smallest size of all minimum cuts in a line.
 
Sample Input
2
4 5
1 4
1 2 3
1 3 1
2 3 1
2 4 1
3 4 2
4 5
1 4
1 2 3
1 3 1
2 3 1
2 4 1
3 4 3
 
Sample Output
2
3
 
Source
 
Recommend
liuyiding   |   We have carefully selected several similar problems for you:  6216 6215 6214 6213 6212 
 
题意:求最少边数的最小割
注意:增广路和最小割集没有关系
方案一:先跑一边最大流,如果边满流,容量+1;否者,容量inf。再跑一遍最大流
方案二:对容量进行处理,容量*(大数或者边数M+1)+1,跑一边最大流Maxflow,处理前的最大流为Maxflow/(M+1),最少边数的最小割集为Maxflow%(M+1)。说明:原图的最小割为为x1、x2、x3...,即∑x,处理后的最小割为∑x*(M+1)+B,其中B为原图最小割边的数量,如果能有边数更少的情况,处理后最小割也会相应的减少,所以处理后得到的B即为最少边数。
代码:

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<set>
#include<bitset>
#include<map>
#include<queue>
#include<stack>
#include<vector>
using namespace std;
typedef long long ll;
typedef pair<int,int> P;
#define bug(x) cout<<"bug"<<x<<endl;
#define PI acos(-1.0)
#define eps 1e-8
const int N=1e5+,M=1e5+;
const int inf=0x3f3f3f3f;
const ll INF=1e18+,mod=1e9+;
struct edge
{
int from,to,cap,flow;
};
vector<edge>es;
vector<int>G[N];
bool vis[N];
int dist[N];
int iter[N];
void init(int n)
{
for(int i=; i<=n+; i++) G[i].clear();
es.clear();
}
void addedge(int from,int to,int cap)
{
es.push_back((edge)
{
from,to,cap,
});
es.push_back((edge)
{
to,from,,
});
int x=es.size();
G[from].push_back(x-);
G[to].push_back(x-);
}
bool BFS(int s,int t)
{
memset(vis,false,sizeof(vis));
queue <int> Q;
vis[s]=true;
dist[s]=;
Q.push(s);
while(!Q.empty())
{
int u=Q.front();
Q.pop();
for (int i=; i<G[u].size(); i++)
{
edge &e=es[G[u][i]];
if (!vis[e.to]&&e.cap>e.flow)
{
vis[e.to]=;
dist[e.to]=dist[u]+;
Q.push(e.to);
}
}
}
return vis[t];
}
int DFS(int u,int t,int f)
{
if(u==t||f==) return f;
int flow=,d;
for(int &i=iter[u]; i<G[u].size(); i++)
{
edge &e=es[G[u][i]];
if(dist[u]+==dist[e.to]&&(d=DFS(e.to,t,min(f,e.cap-e.flow)))>)
{
e.flow+=d;
es[G[u][i]^].flow-=d;
flow+=d;
f-=d;
if(f==) break;
}
}
return flow;
}
int Maxflow(int s,int t)
{
int flow=;
while(BFS(s,t))
{
memset(iter,,sizeof(iter));
int d=;
while(d=DFS(s,t,inf)) flow+=d;
}
return flow;
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
int n,m,s,t;
scanf("%d%d",&n,&m);
scanf("%d%d",&s,&t);
for(int i=; i<=m; i++)
{
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
addedge(u,v,w);
}
Maxflow(s,t);
for(int i=; i<es.size(); i+=)
{
if(es[i].flow==es[i].cap) es[i].cap++;
else es[i].cap=inf;
}
printf("%d\n",Maxflow(s,t));
init(n);
}
return ;
}

方案一

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<set>
#include<bitset>
#include<map>
#include<queue>
#include<stack>
#include<vector>
using namespace std;
typedef long long ll;
typedef pair<int,int> P;
#define bug(x) cout<<"bug"<<x<<endl;
#define PI acos(-1.0)
#define eps 1e-8
const int N=1e5+,M=1e5+;
const int inf=0x3f3f3f3f;
const ll INF=1e18+,mod=1e9+;
struct edge
{
int from,to,cap,flow;
};
vector<edge>es;
vector<int>G[N];
bool vis[N];
int dist[N];
int iter[N];
void init(int n)
{
for(int i=; i<=n+; i++) G[i].clear();
es.clear();
}
void addedge(int from,int to,int cap)
{
es.push_back((edge)
{
from,to,cap,
});
es.push_back((edge)
{
to,from,,
});
int x=es.size();
G[from].push_back(x-);
G[to].push_back(x-);
}
bool BFS(int s,int t)
{
memset(vis,false,sizeof(vis));
queue <int> Q;
vis[s]=true;
dist[s]=;
Q.push(s);
while(!Q.empty())
{
int u=Q.front();
Q.pop();
for (int i=; i<G[u].size(); i++)
{
edge &e=es[G[u][i]];
if (!vis[e.to]&&e.cap>e.flow)
{
vis[e.to]=;
dist[e.to]=dist[u]+;
Q.push(e.to);
}
}
}
return vis[t];
}
int DFS(int u,int t,int f)
{
if(u==t||f==) return f;
int flow=,d;
for(int &i=iter[u]; i<G[u].size(); i++)
{
edge &e=es[G[u][i]];
if(dist[u]+==dist[e.to]&&(d=DFS(e.to,t,min(f,e.cap-e.flow)))>)
{
e.flow+=d;
es[G[u][i]^].flow-=d;
flow+=d;
f-=d;
if(f==) break;
}
}
return flow;
}
int Maxflow(int s,int t)
{
int flow=;
while(BFS(s,t))
{
memset(iter,,sizeof(iter));
int d=;
while(d=DFS(s,t,inf)) flow+=d;
}
return flow;
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
int n,m,s,t;
scanf("%d%d",&n,&m);
scanf("%d%d",&s,&t);
for(int i=; i<=m; i++)
{
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
addedge(u,v,w*(m+)+);
}
printf("%d\n",Maxflow(s,t)%(m+));
init(n);
}
return ;
}

方案二

HDU 6214.Smallest Minimum Cut 最少边数最小割的更多相关文章

  1. HDU 6214 Smallest Minimum Cut(最少边最小割)

    Problem Description Consider a network G=(V,E) with source s and sink t. An s-t cut is a partition o ...

  2. hdu 6214 Smallest Minimum Cut[最大流]

    hdu 6214 Smallest Minimum Cut[最大流] 题意:求最小割中最少的边数. 题解:对边权乘个比边大点的数比如300,再加1 ,最后,最大流对300取余就是边数啦.. #incl ...

  3. hdu 6214 Smallest Minimum Cut(最小割的最少边数)

    题目大意是给一张网络,网络可能存在不同边集的最小割,求出拥有最少边集的最小割,最少的边是多少条? 思路:题目很好理解,就是找一个边集最少的最小割,一个方法是在建图的时候把边的容量处理成C *(E+1 ...

  4. HDU 6214 Smallest Minimum Cut (最小割且边数最少)

    题意:给定上一个有向图,求 s - t 的最小割且边数最少. 析:设边的容量是w,边数为m,只要把每边打容量变成 w * (m+1) + 1,然后跑一个最大流,最大流%(m+1),就是答案. 代码如下 ...

  5. HDU 6214 Smallest Minimum Cut 【网络流最小割+ 二种方法只能一种有效+hdu 3987原题】

    Problem Description Consider a network G=(V,E) with source s and sink t . An s-t cut is a partition ...

  6. HDU 6214 Smallest Minimum Cut 最小割,权值编码

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6214 题意:求边数最小的割. 解法: 建边的时候每条边权 w = w * (E + 1) + 1; 这 ...

  7. hdu 6214 : Smallest Minimum Cut 【网络流】

    题目链接 ISAP写法 #include <bits/stdc++.h> using namespace std; typedef long long LL; namespace Fast ...

  8. Smallest Minimum Cut HDU - 6214(最小割集)

    Smallest Minimum Cut Time Limit: 2000/2000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Oth ...

  9. HDU-6214 Smallest Minimum Cut(最少边最小割)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6214 Problem Description Consider a network G=(V,E) w ...

随机推荐

  1. docker的ubuntu镜像无ifconfig和ping netstat命令

    docker的ubuntu镜像无ifconfig和ping命令 或者 ubuntu系统中无ifconfig 和 ping 解决方案: 执行以下鸣冷: apt-get update apt-get in ...

  2. python成功之道

    https://blog.ansheng.me/article/python-full-stack-way

  3. perl二维数组

    [转载]出处:http://www.cnblogs.com/visayafan/ 1 数组与引用 2 声明的区别 3 访问的区别 4 添加行元素 5 添加列元素 6 访问与打印 6.1 运算符优先级 ...

  4. linux拷贝文件夹cp

    方法就是: cp -r dir dir 如果只是拷贝文件的话直接cp即可

  5. docker 在window10下的安装

    在win10下安装docker 打开下载页面 https://store.docker.com/editions/community/docker-ce-desktop-windows 打开控制面板 ...

  6. POI导入工具类

    前言 导入的通用方法,包括xls.xlsx的取值方法,非空判断方法,空行判断,处理了手机号读取和日期读取格式问题.这几个方法就可以完成简单读取了,有时间我在优化下. maven依赖 <!-- P ...

  7. BZOJ 4584 luogu P3643: [Apio2016]赛艇

    4584: [Apio2016]赛艇 Time Limit: 70 Sec  Memory Limit: 256 MB[Submit][Status][Discuss] Description 在首尔 ...

  8. Ubutu16.04+Cuda9.2/9.0+Cudnn7.12/7.05+TensorFlow-gpu-1.8/1.6

    目录 Ubuntu16.04 Installl 1. 安装环节 2. 安装卡死 3. NVIDIA显卡安装 2. CUDA Install 3.Cudnn7.05 Install 4.Tensorfl ...

  9. nginx gunicorn 部署flask,带参数链接不可用的现象(笔记)

    微信小程序后台,开启 gunicorn之后屏幕会输出打印结果,一旦关闭shell 带参数链接不可用,只有开启shell才能使用, 一针见血 : 注释掉所有print语句,关闭shell 带参数的链接  ...

  10. node.js获取本机Ip, hostName, mac

    //获取ip地址 getIPAdress() { let interfaces = require('os').networkInterfaces(); for (var devName in int ...