『Python』内存分析_list和array
零、预备知识
在Python中,列表是一个动态的指针数组,而array模块所提供的array对象则是保存相同类型的数值的动态数组。由于array直接保存值,因此它所使用的内存比列表少。列表和array都是动态数组,因此往其中添加新元素,而没有空间保存新的元素时,它们会自动重新分配内存块,并将原来的内存中的值复制到新的内存块中。为了减少重新分配内存的次数,通常每次重新分配时,大小都为原来的k倍。k值越大,则重新分配内存的次数越少,但浪费的空间越多。本节通过一系列的实验观察列表和array的内存分配模式。
list存储结构
list声明后结构大体分为3部分,变量名称--list对象(结构性数据+指针数组)--list内容,其中id表示的是list对象的位置,
v引用变量名称,v[:]引用list对象,此规则对python其他序列结构也成立,以下示范可用id佐证,
a=b时,a和b指向同一个list对象
a=b[:]时,a的list对象和b的list对象指向同一个list内容
除此之外[0]和[:1]也是不同的:
In [30]: a[0]
Out[30]: 1 In [31]: a[:1]
Out[31]: [1]
空list占用空间
In [32]: sys.getsizeof([])
Out[32]: 64
一、通过getsizeof()计算列表的增长模式
step1
sys.getsizeof()可以获得列表所占用的内存大小。请编写程序计算一个长度为10000的列表,它的每个下标都保存列表增长到此下标时的大小:
import sys
# 【你的程序】计算size列表,它的每个小标都保存增长到此下标时size列表的大小
size = []
for i in range(10000):
size.append(sys.getsizeof(size)) import pylab as pl
pl.plot(size, lw=2, c='b')
pl.show()
图中每个阶梯跳变的位置都表示一次内存分配,而每个阶梯的长度表示内存分配多出来的大小。
step2
请编写程序计算表示每次分配内存时列表的内存大小的resize_pos数组:
import numpy as np
#【你的程序】计算resize_pos,它的每个元素是size中每次分配内存的位置
# 可以使用NumPy的diff()、where()、nonzero()快速完成此计算。
size = []
for i in range(10000):
size.append(sys.getsizeof(size))
size = np.array(size)
new_size = np.diff(size) resize_pos = size[np.where(new_size)]
# resize_pos = size[np.nonzero(new_size)] pl.plot(resize_pos, lw=2)
pl.show()
print ("list increase rate:")
tmp = resize_pos[25:].astype(np.float) # ❶
print (np.average(tmp[1:]/tmp[:-1])) # ❷
由图可知曲线呈指数增长,第45次分配内存时,列表的大小已经接近10000。
❷为了计算增长率,只需要计算resize_pos数组前后两个值的商的平均值即可。
❶为了提高精度,我们只计算后半部分的平均值,注意需要用astype()方法将整数数组转换为浮点数数组。程序的输出如下:
list increase rate:
1.12754776209
【注】np.where索引定位的两种用法,np.nonzero非零值bool判断的用法,np.diff差分函数的用法。
step3
我们可以用scipy.optimize.curve_fit()对resize_pos数组进行拟合,拟合函数为指数函数:
请编写程序用上面的公式对resize_pos数组进行拟合:
from scipy.optimize import curve_fit
#【你的程序】用指数函数对resize_pos数组进行拟合
def func(x, a, b, c, d):
return a * np.exp(b * x + c) + d
xdata = range(len(resize_pos))
ydata = resize_pos
popt, pcov = curve_fit(func, xdata, ydata) y = [func(i, *popt) for i in xdata]
pl.plot(xdata, y, lw=1, c='r')
pl.plot(xdata, ydata, lw=1, c='b')
pl.show()
print ("list increase rate by curve_fit:")
print (10**popt[1])
list increase rate by curve_fit:
1.31158606108
【注意】本程序中对于scipy中的指数拟合做了示范。
Q1:元素存储地址是否连续
首先见得的测试一下list对象存储的内容(结构3)的内存地址,
In [1]: a=[1,2,3,'a','b','c','de',[4,5]] In [2]: id(a)
Out[2]: 139717112576840 In [3]: for i in a:
...: print(id(i))
...:
139717238769920
139717238769952
139717238769984
139717239834192
139717240077480
139717240523888
139717195281104
139717112078024 In [4]: for i in a[6]:
...: print(id(i))
...:
139717240220952
139717240202048 In [5]: for i in a[7]:
...: print(id(i))
...:
139717238770016
139717238770048
然后看一下相对地址,
In [6]: for i in a:
...: print(id(i)-139717238769920)
...:
0
32
64
1064272
1307560
1753968
-43488816
-126691896 In [7]: for i in a[6]:
...: print(id(i)-139717238769920)
...:
1451032
1432128 In [8]: for i in a[7]:
...: print(id(i)-139717238769920)
...:
96
128
可见,对于list对象,其元素内容并不一定线性存储,但是由于内存分配的问题,会出现线性存储的假象,当元素出现容器或者相对前一个元素类型改变时,内存空间就会不再连续。
Q2:list对象地址和元素地址是否连续
其实Q1已经回答了这个问题,毕竟元素地址本身就不连续,不过我们还是测试了一下,
In [22]: id(a[0])-id(a)
Out[22]: 126193080
相差甚远,而且我们分析源码可知,list对象主体是一个指针数组,也就是id(a)所指的位置主体是一个指向元素位置的指针数组,当然还有辅助的对象头信息之类的(python中几个常见的“黑盒子”之 列表list)。
Q3:list对象(不含元素)占用内存情况分析
In [16]: sys.getsizeof([1,2,3,'a','b','c','de'])
Out[16]: 120 In [17]: sys.getsizeof([1,2,3,'a','b','c'])
Out[17]: 112 In [18]: sys.getsizeof([1,2,3,'a','b'])
Out[18]: 104
可见,list每一个对象占用8字节32位空间,我们来看切片,
In [20]: sys.getsizeof(a[:3])
Out[20]: 88 In [21]: sys.getsizeof(a[:4])
Out[21]: 96 In [23]: sys.getsizeof(a[3:4])
Out[23]: 72 In [24]: sys.getsizeof(a[3:5])
Out[24]: 80
切片对象也是每个元素占8字节,但是切片也是list对象,即使从中间切(不切头),也会包含头信息的存储占用。
二、通过运算时间估算array内存分配情况
遗憾的是,无论array对象的长度是多少,sys.getsizeof()的结果都不变。因此无法用上节的方法计算array对象的增长因子。
由于内存分配时会耗费比较长的时间,因此可以通过测量每次增加元素的时间,找到内存分配时的长度。请编写测量增加元素的时间的程序:
from array import array
import time
#【你的程序】计算往array中添加元素的时间times
times = []
times_step = []
arrays = [array('l') for i in range(1000)]
start = time.time()
for i in range(1000):
start_step = time.time()
[a.append(i) for a in arrays]
end = time.time()
times_step.append(end-start_step)
times.append(end-start) pl.figure()
pl.plot(times)
pl.figure()
pl.plot(times_step)
pl.show()
输出两幅图,前面的表示元素个数对应的程序总耗时,后面的表示每一次添加元素这一过程的耗时,注意,这张图只有在array数量较大时才是这个形状,数组数量不够时折线图差异很大。
进一步的,我们分析一下耗时显著大于附近点(极大值)的时刻的序列对应此时元素数量的折线图。
ts = np.array(times_step)
le = range(np.sum(ts>0.00025))
si = np.squeeze(np.where(ts>0.00025))
pl.plot(le,si,lw=2)
pl.show()
MXNet对临时数组内存的优化
以MXNet中数组为例,讲解一下序列计算时的内存变化以及优化方式,
『Python』内存分析_list和array的更多相关文章
- 『Numpy』内存分析_高级切片和内存数据解析
在计算机中,没有任何数据类型是固定的,完全取决于如何看待这片数据的内存区域. 在numpy.ndarray.view中,提供对内存区域不同的切割方式,来完成数据类型的转换,而无须要对数据进行额外的co ...
- 『Numpy』内存分析_numpy.dtype解析内存数据
numpy.dtype用于自定义数据类型,实际是指导python程序存取内存数据时的解析方式. [注意],更改格式不能使用 array.dtype=int32 这样的硬性更改,会不改变内存直接该边解析 ...
- 『Numpy』内存分析_利用共享内存创建数组
引.内存探究常用函数 id(),查询对象标识,通常返回的是对象的地址 sys.getsizeof(),返回的是 这个对象所占用的空间大小,对于数组来说,除了数组中每个值占用空间外,数组对象还会存储数组 ...
- 『Python』__getattr__()特殊方法
self的认识 & __getattr__()特殊方法 将字典调用方式改为通过属性查询的一个小class, class Dict(dict): def __init__(self, **kw) ...
- 『Python』为什么调用函数会令引用计数+2
一.问题描述 Python中的垃圾回收是以引用计数为主,分代收集为辅,引用计数的缺陷是循环引用的问题.在Python中,如果一个对象的引用数为0,Python虚拟机就会回收这个对象的内存. sys.g ...
- 『Python』源码解析_从ctype模块理解对象
1.对象的引用计数 从c代码分析可知,python所有对象的内存有着同样的起始结构:引用计数+类型信息,实际上这些信息在python本体重也是可以透过包来一窥一二的, from ctypes impo ...
- 『Python』多进程处理
尝试学习python的多进程模组,对比多线程,大概的区别在: 1.多进程的处理速度更快 2.多进程的各个子进程之间交换数据很不方便 多进程调用方式 进程基本使用multicore() 进程池优化进程的 ...
- 『Python』列表生成式、生成器与迭代器
1. 迭代 在 Python中, 迭代是通过 for ... in 来完成的, 而很多语言比如 C 语言, 迭代 list 是通过下标完成的. Python 的 for 循环抽象程度要高于 C 的 f ...
- 『Python』多进程
Python中的多线程无法利用多核优势,如果想要充分地使用多核CPU的资源(os.cpu_count()查看),在Python中大部分情况需要使用多进程.Python提供了multiprocessin ...
随机推荐
- python中的单例
使用__new__ 因为一个类每一次实例化的时候,都会走它的__new__方法.所以我们可以使用__new__来控制实例的创建过程,代码如下: class Single: instance = Non ...
- Oracle——trunc()函数的使用
trunc是oracle数据库中一种格式化函数. 1.处理日期 1.1.当年第一天: SELECT TRUNC(SYSDATE,'YYYY') FROM DUAL; SELECT TRUNC(SYSD ...
- 深入理解Java虚拟机5-chap7-斗者2星
一.类加载机制 1.类加载机制:虚拟机把描述类的数据从Class文件加载到内存,并对数据进行校验.转换解析和初始化,最终形成可以被虚拟机直接使用的Class文件加载到内存,这就是类加载机制. 2.类型 ...
- vue2Leaflet使用 Vue2Leaflet-master 的demo
首先下载该demo 地址:https://github.com/KoRiGaN/Vue2Leaflet 下载后可以运行里面的例子,在examples文件夹内,该文件夹本身就是一个完整的项目 然后cmd ...
- HTML5 元素属性介绍
HTMLElement 表示所有的 HTML 元素. 这里将以事件属性和非事件属性的分类进行介绍. 事件属性大多继承自GlobalEventHandlers,非事件属性大多继承自Element. 菜单 ...
- 【转】Jira插件安装
一.Jira插件列表(可以将下面免费插件直接下载,然后登陆jira,在"插件管理"->"上传插件",将下载后的免费插件直接进行上传安装即可) 序号 插件名 ...
- vue store存储commit和dispatch
vue store存储commit和dispatch this.$store.commit('toShowLoginDialog', true);this.$store.dispatch('toSho ...
- the network could not establish the connection
为了方便建表等操作,我用sql developer 连接linux 底下的数据库,可连接时出现了这个问题the network could not establish the connection. ...
- JavaScript 字典
JavaScript 字典 字典以 key value 形式出现 使用: a = {'k1':'v1,''k2':'v2'} 获取值: a['k1'] 获取值:v1
- linux下磁盘查看和分区
4.1 df命令 4.2 du命令 4.3/4.4 磁盘分区 df命令df输出磁盘文件系统使用情况: [root@centos ~]# df文件系统 1K-块 已用 可用 已用% 挂载点 /dev/s ...