Cheapest Palindrome [POJ3280] [区间DP] [经典]
一句话题意:每个字母添加和删除都相应代价(可以任意位置 增加/删除),求把原串变成回文串的最小代价
Description
保持对所有奶牛的跟踪是一项棘手的任务,因此农场主约翰已经安装了一个系统来实现自动化。他在每头奶牛身上安装了一个电子ID标签,系统将在奶牛经过扫描仪时读取。每个ID标记是从字母表中提取的一个字符串。
奶牛,它们是淘气的动物,有时试图通过倒着走来欺骗系统。如果一头奶牛的ID是“abcba”,那么无论她怎么走,它都能读到同样的东西,而拥有“abcb”的奶牛可能会注册为两个不同的ID(“abcb”和“bcba”)。
FJ希望改变奶牛的ID标签,这样无论奶牛走过哪个方向,他们都能读到同样的标签。例如,“abcb”可以通过在末尾添加“a”来改变,从而形成“abcba”,这样ID就会是一个回文串。更改ID的其他一些方法包括将三个字母“bcb”添加到“abcb”的开始,以获得ID“bcbabcb”或删除字母“a”以产生ID“bcb”。我们可以在字符串中的任意位置添加或删除字符,其长度比原来的字符串长或短。
不幸的是,ID标签是电子信息,每个字符插入或删除都有代价,这取决于要添加或删除的字符值。考虑到奶牛ID标签的内容以及插入或删除字母表中的每个字符的成本,找到更改ID标记的最小成本,从而满足FJ的需求。一个空的ID标签被认为满足了读取前后相同的要求。只有带有相关成本的字母才能添加到字符串中。
Input
Line 2: 这一行包含了组成初始ID字符串的M个字符
Lines 3..
N+2: 每行包含三个空间分隔的实体:输入字母和两个整数的字符,分别是添加和删除该字符的成本(Ci<=10000)。
Sample Input
3 4
abcb
a 1000 1100
b 350 700
c 200 800
Sample Output
900
Hint
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define RG register int
#define rep(i,a,b) for(RG i=a;i<=b;i++)
#define per(i,a,b) for(RG i=a;i>=b;i--)
#define inf (1<<30)
using namespace std;
int n,m;
int val[],dp[][];
char s[];
inline int read()
{
int x=,f=;char c=getchar();
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
} void DP()
{
rep(k,,m)
{
for(RG i=,j=k;j<=m;j++,i++)
{
dp[i][j]=inf;
if(s[i]==s[j]) dp[i][j]=dp[i+][j-];
else
{
dp[i][j]=min(dp[i][j],dp[i+][j]+val[s[i]]);
dp[i][j]=min(dp[i][j],dp[i][j-]+val[s[j]]);
}
}
}
printf("%d",dp[][m]);
} int main()
{
char ch;int x,y;
n=read(),m=read();
scanf("%s",s+);
rep(i,,n) cin>>ch,x=read(),y=read(),val[ch]=min(x,y);
DP();
return ;
}
Cheapest Palindrome [POJ3280] [区间DP] [经典]的更多相关文章
- Cheapest Palindrome(区间DP)
个人心得:动态规划真的是够烦人的,这题好不容易写出了转移方程,结果超时,然后看题解,为什么这些题目都是这样一步一步的 递推,在我看来就是懵逼的状态,还有那个背包也是,硬是从最大的V一直到0,而这个就是 ...
- 【POJ - 3280】Cheapest Palindrome(区间dp)
Cheapest Palindrome 直接翻译了 Descriptions 给定一个字符串S,字符串S的长度为M(M≤2000),字符串S所含有的字符的种类的数量为N(N≤26),然后给定这N种字符 ...
- POJ 题目3280 Cheapest Palindrome(区间DP)
Cheapest Palindrome Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 7148 Accepted: 34 ...
- 【POJ】3280 Cheapest Palindrome(区间dp)
Cheapest Palindrome Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 10943 Accepted: 5 ...
- POJ 3280 Cheapest Palindrome(区间DP求改成回文串的最小花费)
题目链接:http://poj.org/problem?id=3280 题目大意:给你一个字符串,你可以删除或者增加任意字符,对应有相应的花费,让你通过这些操作使得字符串变为回文串,求最小花费.解题思 ...
- POJ3280 Cheapest Palindrome (区间DP)
dp[i][j]表示将字符串子区间[i,j]转化为回文字符串的最小成本. 1 #include<cstdio> 2 #include<algorithm> 3 #include ...
- POJ - 3280 Cheapest Palindrome 【区间dp】【非原创】
Keeping track of all the cows can be a tricky task so Farmer John has installed a system to automate ...
- POJ 3280 Cheapest Palindrome(区间dp)
dp[i][j]表示处理完i到j的花费,如果s[i] == s[j] 则不需要处理,否则处理s[i]或s[j], 对一个字符ch,加上ch或删掉ch对区间转移来说效果是一样的,两者取min. #inc ...
- POJ 3280 Cheapest Palindrome (区间DP) 经典
<题目链接> 题目大意: 一个由小写字母组成的字符串,给出字符的种类,以及字符串的长度,再给出添加每个字符和删除每个字符的代价,问你要使这个字符串变成回文串的最小代价. 解题分析: 一道区 ...
随机推荐
- POJ 3080 Blue Jeans (字符串处理暴力枚举)
Blue Jeans Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 21078 Accepted: ...
- mysql集群7.4.1
一:mysql集群原理: 1 mysql集群分为三个节点: 1.1 控制节点:本身不提供服务只是控制整个集群的开启与关闭 1.2 数据节点:真正提供数据库的存储,并和其他数据节点关联用 1.3 sql ...
- DOM对象,控制HTML元素
认识DOM 文档对象模型DOM(Document Object Model)定义访问和处理HTML文档的标准方法.DOM 将HTML文档呈现为带有元素.属性和文本的树结构(节点树). 节点属性: 遍历 ...
- 如何保证Redis的高并发
单机的redis几乎不太可能说QPS超过10万+,一般在几万. 除非一些特殊情况,比如你的机器性能特别好,配置特别高,物理机,维护做的特别好,而且你的整体的操作不是太复杂. Redis通过主从架构,实 ...
- python-中缀表达式转前缀表达式
作完了中缀前缀,作一个归纳吧. https://www.cnblogs.com/unixfy/p/3344550.html # coding = utf-8 class Stack: def __in ...
- Ansible playbook 部署filebeat
- hosts: all tasks: - name: Copy Package copy: src=/usr/local/filebeat--linux-x86_64.tar.gz dest=/us ...
- nodejs 2017
1. nodejs函数 path() nodejs全局变量 __dirname a.js // 运行 node a.js var path = require('path'); console.l ...
- spring的4种事务特性,5种隔离级别,7种传播行为
spring事务: 事务: 事务逻辑上的一组操作,组成这组操作的各个逻辑单元,要么一起成功,要么一起失败. 事务特性(4种): 原子性 (atomicity):强调事务的不可分割. 一致性 (con ...
- haoi2018
题解: 题目相对其他省难一点 不过弱省省选知识点都这么集中的么.. 4道数学题... 1.[HAOI2018]奇怪的背包 这题考场做就gg了... 其实我想到了那个性质.. 就是这个一定要是gcd的倍 ...
- P2860 [USACO06JAN]冗余路径Redundant Paths
题解: 首先要边双缩点这很显然 然后变成树上问题 发现dp,dfs好像不太对 考虑一下度数 发现只要在度数为1的点之间连边 但我好像不太会证明这个东西.. 网上也没有看到比较正确的证明方法和连边策略. ...