题目大意

\(n\)(\(n\leq2*10^5\))个点,\(m\)(\(m\leq4*10^5\))条边的图,每条边有海拔\(a_i(a_i\leq10^9)\)、长度\(l_i(l_i\leq10^4)\),定义两点\(a,b\)距离为从\(a\)走到\(b\)至少要走的长度之和

\(q\)组询问,强制在线,每次给出\(v,p\),表示询问不走\(a_i\leq p\)的边,从\(v\)出发能走到的与\(1\)号点距离最近的点到\(1\)号点的距离

题解

预处理每个点到\(1\)号点的距离

每次询问相当于在问删掉所有\(a_i\leq p\)的边,点\(v\)所在连通块中到\(1\)号点最小的距离

发现只考虑原图的最大生成树上的边,不会改变连通性

点\(v\)所在连通块之所以到不了别的点集,是因为它们之间在最大生成树上的路径中有一条边\(a_i\leq p\)

考虑kruskal的过程,相当于有一次是用一条\(a_i\leq p\)的边合并了点\(v\)所在连通块与其他点集

这样就可以以这种方法建一新棵树:一开始有\(n\)个点,没有边,kruskal中每合并两个点集,就新建一个表示当前边的点,并且将两个点集新树中的根变成新建点的儿子

新树中一个点的子树表示这个点对应的原图的最大生成树中一条边kruskal时合并的两个点集,也就是说,这个子树中任意两点的路径中不会出现边权小于该边的边

所以每次询问在新树中找\(v\)的深度最小的\(a_i> p\)的祖先

这个新树也叫kruskal重构树

代码
#include<algorithm>
#include<cmath>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<ctime>
#include<iomanip>
#include<iostream>
#include<map>
#include<queue>
#include<set>
#include<stack>
#include<vector>
#define rep(i,x,y) for(register int i=(x);i<=(y);++i)
#define dwn(i,x,y) for(register int i=(x);i>=(y);--i)
#define view(u,k) for(int k=fir[u];~k;k=nxt[k])
#define maxn 200010
#define maxm 800010
#define pii pair<int,int>
#define fi first
#define se second
#define mp make_pair
#define LL long long
using namespace std;
int read()
{
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)&&ch!='-')ch=getchar();
if(ch=='-')f=-1,ch=getchar();
while(isdigit(ch))x=(x<<1)+(x<<3)+ch-'0',ch=getchar();
return x*f;
}
void write(int x)
{
if(x==0){putchar('0'),putchar('\n');return;}
int f=0;char ch[20];
if(x<0)putchar('-'),x=-x;
while(x)ch[++f]=x%10+'0',x/=10;
while(f)putchar(ch[f--]);
putchar('\n');
return;
}
int t,n,m,fir[maxn],nxt[maxm],v[maxm],w[maxm],fa[maxn],anc[maxn<<1][20],val[maxn<<1],mind[maxn<<1],ans;
int cnte,cntnd,dis[maxn],vis[maxn],q,k,s;
struct edge{int u,v,w;}e[maxm>>1];
void ade(int u1,int v1,int w1){v[cnte]=v1,w[cnte]=w1,nxt[cnte]=fir[u1],fir[u1]=cnte++;}
priority_queue<pii >Q;
bool cmp(edge x,edge y){return x.w>y.w;}
void reset()
{
rep(i,1,n)fa[i]=-i,fir[i]=-1,dis[i]=2147483647,vis[i]=0;
rep(i,1,(n<<1)){val[i]=0,mind[i]=2147483647;rep(j,0,19)anc[i][j]=0;}ans=0;
cnte=0,cntnd=n;
}
int f(int x){return fa[x]<0?x:fa[x]=f(fa[x]);}
int main()
{
t=read();
while(t--)
{
n=read(),m=read();
reset();
rep(i,1,m){int x=read(),y=read(),l=read(),a=read();ade(x,y,l),ade(y,x,l),e[i].u=x,e[i].v=y,e[i].w=a;}
sort(e+1,e+m+1,cmp);
dis[1]=0;Q.push(mp(0,1));
while(!Q.empty())
{
int u=Q.top().se;Q.pop();
if(vis[u])continue;vis[u]=1;
view(u,k)if(dis[v[k]]>dis[u]+w[k])
{
dis[v[k]]=dis[u]+w[k];
if(!vis[v[k]])Q.push(mp(-dis[v[k]],v[k]));
}
}
rep(i,1,n)mind[i]=dis[i];
rep(i,1,m)
{
int x=f(e[i].u),y=f(e[i].v);
if(x!=y)
{
cntnd++,val[cntnd]=e[i].w,anc[-fa[x]][0]=anc[-fa[y]][0]=cntnd,mind[cntnd]=min(mind[-fa[x]],mind[-fa[y]]);
fa[x]=y,fa[y]=-cntnd;
}
}
dwn(i,cntnd,1){rep(j,1,19)anc[i][j]=anc[anc[i][j-1]][j-1];}
q=read(),k=read(),s=read();
while(q--)
{
int u=read(),p=read(),tu;
u=(u+k*ans-1)%n+1,p=((LL)p+(LL)k*ans)%(LL)(s+1),tu=u;
dwn(i,19,0)if(anc[tu][i]&&val[anc[tu][i]]>p)tu=anc[tu][i];
write(ans=mind[tu]);
}
}
return 0;
}
/*
2
4 3
1 2 50 1
2 3 100 2
3 4 50 1
5 0 2
3 0
2 1
4 1
3 1
3 2
4 3
1 2 50 1
2 3 100 2
3 4 50 1
5 0 2
3 0
2 1
4 1
3 1
3 2
*/

并不对劲的bzoj5415:loj2718:uoj393:p4768:[NOI2018]归程的更多相关文章

  1. Luogu P4768 [NOI2018]归程(Dijkstra+Kruskal重构树)

    P4768 [NOI2018]归程 题面 题目描述 本题的故事发生在魔力之都,在这里我们将为你介绍一些必要的设定. 魔力之都可以抽象成一个 \(n\) 个节点. \(m\) 条边的无向连通图(节点的编 ...

  2. P4768 [NOI2018]归程(kruskal 重构树)

    洛谷P4768 [NOI2018]归程 LOJ#2718.「NOI2018」归程 用到 kruskal 重构树,所以先说这是个啥 显然,这和 kruskal 算法有关系 (废话 这个重构树是一个有点权 ...

  3. [洛谷P4768] [NOI2018]归程 (kruskal重构树模板讲解)

    洛谷题目链接:[NOI2018]归程 因为题面复制过来有点炸格式,所以要看题目就点一下链接吧\(qwq\) 题意: 在一张无向图上,每一条边都有一个长度和海拔高度,小\(Y\)的家在\(1\)节点,并 ...

  4. 洛谷P4768 [NOI2018]归程(Kruskal重构树)

    题意 直接看题目吧,不好描述 Sol 考虑暴力做法 首先预处理出从$1$到每个节点的最短路, 对于每次询问,暴力的从这个点BFS,从能走到的点里面取$min$ 考虑如何优化,这里要用到Kruskal重 ...

  5. Luogu P4768 [NOI2018]归程

    题目链接 \(Click\) \(Here\) \(Kruskal\)重构树的好题.想到的话就很好写,想不到乱搞的难度反而相当高. 按照点的水位,建出来满足小根队性质的\(Kruskal\)重构树,这 ...

  6. 洛谷P4768 [NOI2018]归程(可持久化并查集,最短路)

    闲话 一个蒟蒻,在网络同步赛上进行了这样的表演-- T2组合计数不会,T3字符串数据结构不会,于是爆肝T1 一开始以为整个地图都有车,然后写了2h+的树套树,终于发现样例过不去 然后写可持久化并查集D ...

  7. 洛谷P4768 [NOI2018]归程 [可持久化并查集,Dijkstra]

    题目传送门 归程 格式难调,题面就不放了. 分析: 之前同步赛的时候反正就一脸懵逼,然后场场暴力大战,现在呢,还是不会$Kruskal$重构树,于是就拿可持久化并查集做. 但是之前做可持久化并查集的时 ...

  8. 洛谷 P4768 [NOI2018]归程

    洛谷 361行代码的由来 数据分治大发好啊- NOI的签到题,可怜我在家打了一下午才搞了80分. 正解应该是kruskal重构树或排序+可持久化并查集. 我就分点来讲暴力80分做法吧(毕竟正解我也没太 ...

  9. P4768 [NOI2018]归程

    \(\color{#0066ff}{题目描述}\) 本题的故事发生在魔力之都,在这里我们将为你介绍一些必要的设定. 魔力之都可以抽象成一个 n 个节点.m 条边的无向连通图(节点的编号从 1 至 n) ...

随机推荐

  1. Educational Codeforces Round 36 (Rated for Div. 2) G. Coprime Arrays

    求a_i 在 [1,k]范围内,gcd(a_1,a_2...,a_n) = 1的a的数组个数. F(x)表示gcd(a_1,a_2,...,a_n) = i的a的个数 f(x)表示gcd(a_1,a_ ...

  2. VC/MFC中计算程序运行时间

    转自原文VC/MFC中计算程序运行时间 说明,这四种方法也分别代表了类似的实现,在MFC中,所可以从哪些类集合去考虑. 方法一 利用GetTickCount函数(ms) CString str; lo ...

  3. OSI七层模型详解(转)

    OSI 七层模型通过七个层次化的结构模型使不同的系统不同的网络之间实现可靠的通讯,因此其最主要的功能就是帮助不同类型的主机实现数据传输 . 完成中继功能的节点通常称为中继系统.在OSI七层模型中,处于 ...

  4. POJ - 1062 昂贵的聘礼(最短路Dijkstra)

    昂贵的聘礼 Time Limit: 1000MS Memory Limit: 10000KB 64bit IO Format: %I64d & %I64u SubmitStatus Descr ...

  5. JSP简明教程:汇总

    原创JSP教程,简洁明了,不含废话. JSP简明教程(一):JSP简单介绍 JSP简明教程(二):JSP基本的语法 JSP简明教程(三):JSP隐含对象 JSP简明教程(四):EL表达式语言.Java ...

  6. java 短信猫发送短信的方法

    用java实现短信收发的功能,目前一般项目中短信群发功能的实现方法大致有下面三种: ·                 1. 向运行商申请短信网关,不需要额外的设备,利用运行商提供的API调用程序发送 ...

  7. 全国省市区三级联动js

    function Dsy(){ this.Items = {}; } Dsy.prototype.add = function(id,iArray){ this.Items[id] = iArray; ...

  8. mysql (primary key)_(unique key)_(index) difference

    MYSQL  index  MYSQL索引用来快速地寻找那些具有特定值的记录,所有MySQL索引都以B-树的形式保存.如果没有索引,执行查询时MySQL必须从第一个记录开始扫描整个表的所有记录,直至找 ...

  9. 父节点parentNode

    <!DOCTYPE HTML> <html> <head> <meta http-equiv="Content-Type" content ...

  10. hibernate的查询缓存和二级缓存的配合使用

    我的上一篇博客Hibernate缓存体系之查询缓存(query cache),以及list和iterate方法的差别介绍了查询缓存的概念,以及list和iterate的差别.读者可能注意到:那篇博客測 ...