Given a non-empty 2D matrix matrix and an integer k, find the max sum of a rectangle in the matrix such that its sum is no larger than k.
Example:
Given matrix = [
  [1,  0, 1],
  [0, -2, 3]
]
k = 2
The answer is 2. Because the sum of rectangle [[0, 1], [-2, 3]] is 2 and 2 is the max number no larger than k (k = 2).
Note:
    The rectangle inside the matrix must have an area > 0.
    What if the number of rows is much larger than the number of columns?
详见:https://leetcode.com/problems/max-sum-of-rectangle-no-larger-than-k/description/

C++:

class Solution {
public:
int maxSumSubmatrix(vector<vector<int>>& matrix, int k)
{
if (matrix.empty() || matrix[0].empty())
{
return 0;
}
int m = matrix.size(), n = matrix[0].size(), res = INT_MIN;
int sum[m][n];
for (int i = 0; i < m; ++i)
{
for (int j = 0; j < n; ++j)
{
int t = matrix[i][j];
if (i > 0)
{
t += sum[i - 1][j];
}
if (j > 0)
{
t += sum[i][j - 1];
}
if (i > 0 && j > 0)
{
t -= sum[i - 1][j - 1];
}
sum[i][j] = t;
for (int r = 0; r <= i; ++r)
{
for (int c = 0; c <= j; ++c)
{
int d = sum[i][j];
if (r > 0)
{
d -= sum[r - 1][j];
}
if (c > 0)
{
d -= sum[i][c - 1];
}
if (r > 0 && c > 0)
{
d += sum[r - 1][c - 1];
}
if (d <= k)
{
res = max(res, d);
}
}
}
}
}
return res;
}
};

参考:https://www.cnblogs.com/grandyang/p/5617660.html

363 Max Sum of Rectangle No Larger Than K 最大矩阵和不超过K的更多相关文章

  1. 363. Max Sum of Rectangle No Larger Than K

    /* * 363. Max Sum of Rectangle No Larger Than K * 2016-7-15 by Mingyang */ public int maxSumSubmatri ...

  2. [LeetCode] 363. Max Sum of Rectangle No Larger Than K 最大矩阵和不超过K

    Given a non-empty 2D matrix matrix and an integer k, find the max sum of a rectangle in the matrix s ...

  3. 【leetcode】363. Max Sum of Rectangle No Larger Than K

    题目描述: Given a non-empty 2D matrix matrix and an integer k, find the max sum of a rectangle in the ma ...

  4. 【LeetCode】363. Max Sum of Rectangle No Larger Than K 解题报告(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 题目地址: https://leetcode.com/problems/max-sum- ...

  5. 第十三周 Leetcode 363. Max Sum of Rectangle No Larger Than K(HARD)

    Leetcode363 思路: 一种naive的算法就是枚举每个矩形块, 时间复杂度为O((mn)^2), 可以做少许优化时间复杂度可以降低到O(mnnlogm), 其中m为行数, n为列数. 先求出 ...

  6. [LeetCode] Max Sum of Rectangle No Larger Than K 最大矩阵和不超过K

    Given a non-empty 2D matrix matrix and an integer k, find the max sum of a rectangle in the matrix s ...

  7. Leetcode: Max Sum of Rectangle No Larger Than K

    Given a non-empty 2D matrix matrix and an integer k, find the max sum of a rectangle in the matrix s ...

  8. Max Sum of Rectangle No Larger Than K

    Given a non-empty 2D matrix matrix and an integer k, find the max sum of a rectangle in the matrix s ...

  9. [Swift]LeetCode363. 矩形区域不超过 K 的最大数值和 | Max Sum of Rectangle No Larger Than K

    Given a non-empty 2D matrix matrix and an integer k, find the max sum of a rectangle in the matrix s ...

随机推荐

  1. Python随笔day02

    算术运算符 +   -   *  **   /   //   % 比较运算符 >  <  ==   >=   <=   != Python中提供一种更加简单的比较方式. 当判断 ...

  2. HTML5中Canvas概述

    一.HTML5 Canvas历史 Canvas的概念最初是由苹果公司提出的,用于在Mac OS X WebKit中创建控制板部件(dashboard widget).在Canvas出现之前,开发人员若 ...

  3. 53. spring boot系列合集【从零开始学Spring Boot】

    前40章节的spring boot系列已经打包成PDF在csdn进行发布了,如果有需要的可以进行下载. 下载地址:http://download.csdn.net/detail/linxinglian ...

  4. centos7 mysql安装与用户设置

    1.环境:Centos 7.0 64位2.mysql版本:5.73.安装:https://dev.mysql.com/doc/refman/5.7/en/installing.html3.1.创建my ...

  5. hust 1017

    题意:求01矩阵的精确覆盖. 分析:本来想学习dancing links来解决数独问题,发现dancing links最初解决的问题是精确覆盖,于是就找到这道题来做了.这种NPC问题只能用DFS暴搜的 ...

  6. alpha版出炉,实现win2008 service的session 0穿透

    指定用户名,拿最小session,实现和用户ui交互. 这样,搞windows的自动化部署,就可以向前一大步啦. 比以前用psexec要用户名密码,指定session要先进多啦. 安全保密性也提高了. ...

  7. JNA调用库文件

    最近项目中要集成厂商的卡口摄像头,需要通过jna调用库函数接收卡口相机抓拍的过车数据.本文记录了Java调用C语言动态库(jna)的调用方式.回调函数.结构体等. JNA全称Java Native A ...

  8. Oracle RAC load blance

    首先声明 本文基本是阅读 大话RAC 后的笔记.OK, 进入正题. Oracle 10g RAC中采取两种方式提供负载均衡.第一种是connection blance.在用户连接的时候,根据随机算法把 ...

  9. 二维数组的查找,刷题成功——剑指Offer

    今天又做了一道题目,通过啦,欧耶! https://www.nowcoder.net/practice/abc3fe2ce8e146608e868a70efebf62e?tpId=13&tqI ...

  10. golang中channels的本质详解,经典!

    原文:https://www.goinggo.net/2014/02/the-nature-of-channels-in-go.html The Nature Of Channels In Go 这篇 ...