题目 对称二叉树

  
   题目描述

思路

  检查是否符合对称条件

    条件很简单——结构对称&&点权对称

    要做到点权对称其实也就顺便结构对称了

    于是条件可以简化为点权对称

    可以考虑并行搜索

 bool con(int l,int r) {
if(l == -&&r == -)
return ;
if(l == -||r == -)
return ;
if(w[l] == w[r])
if(check(l,r))
return ;
return ;
}
bool check(int x,int y) {
if(x == -&&y == -)
return ;
if(x == -||y == -)
return ;
if(w[x] != w[y])
return ;
int l = Root[x].l,l1 = Root[y].l;
int r = Root[y].r,r1 = Root[x].r;
if(con(l,r)&&con(l1,r1))
return ;
return ;
}

  信仰深搜

    就三个点

  

    你就装作上面还有一个点

  

 int dfs(int x) {
if(x == -) return ;
if(check(Root[x].l,Root[x].r)) {
int ans = Find(x) + ;
return ans;
}
int ans = max(dfs(Root[x].l),dfs(Root[x].r));
return ans;
}

  找答案

    加一指根节点

 int Find(int x) {
int q = ;
int l = Root[x].l;
int r = Root[x].r;
if(l != -) q += Find(l) + ;
if(r != -) q += Find(r) + ;
return q;
}

  另外
    读入时要记录这样几个玩意儿

  

     for(i = ;i <= n;i++)
scanf("%d",&w[i]);
for(i = ;i <= n;i++)
scanf("%d%d",&Root[i].l,&Root[i].r);

  code

 

 #include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define M 1000001
using namespace std;
int w[M];
struct N {
int l,r;
}Root[M];
bool con(int,int);
bool check(int,int);
//两个函数相互递归调用,并行搜索检查是否符合要求
int dfs(int);
//核心
int Find(int);
//其实就是找有多少个点
int main() {
int i,n;
scanf("%d",&n);
for(i = ;i <= n;i++)
scanf("%d",&w[i]);
for(i = ;i <= n;i++)
scanf("%d%d",&Root[i].l,&Root[i].r);
int ans = dfs();
printf("%d",ans);
return ;
} bool con(int l,int r) {
if(l == -&&r == -)
return ;
if(l == -||r == -)
return ;
if(w[l] == w[r])
if(check(l,r))
return ;
return ;
}
bool check(int x,int y) {
if(x == -&&y == -)
return ;
if(x == -||y == -)
return ;
if(w[x] != w[y])
return ;
int l = Root[x].l,l1 = Root[y].l;
int r = Root[y].r,r1 = Root[x].r;
if(con(l,r)&&con(l1,r1))
return ;
return ;
}
int Find(int x) {
int q = ;
int l = Root[x].l;
int r = Root[x].r;
if(l != -) q += Find(l) + ;
if(r != -) q += Find(r) + ;
return q;
}
int dfs(int x) {
if(x == -) return ;
if(check(Root[x].l,Root[x].r)) {
int ans = Find(x) + ;
return ans;
}
int ans = max(dfs(Root[x].l),dfs(Root[x].r));
return ans;
}

总结

    信仰很重要

    这代码很慢但不至于卡常,还有大量可优化地方,此处不再赘述

    它非常好理解,相信任何人都能写出比这更优秀的代码

2018NOIP普及T4---对称二叉树的更多相关文章

  1. P5018 [NOIP2018 普及组] 对称二叉树

    P5018 [NOIP2018 普及组] 对称二叉树 题目 P5018 思路 通过hash值来判断左右树是否相等 \(hl[i]\) 与 \(Hl[i]\) 是防止hash冲突, \(r\) 同理 注 ...

  2. [NOIP2018 PJ T4]对称二叉树

    题目大意:问一棵有根带权二叉树中最大的对称二叉树子树,对称二叉树为需满足将这棵树所有节点的左右子树交换,新树和原树对应位置的结构相同且点权相等. 题解:在对称二叉树中,对于深度相同的两个节点$u,v$ ...

  3. 2021.08.09 P5018 对称二叉树(树形结构)

    2021.08.09 P5018 对称二叉树(树形结构) [P5018 NOIP2018 普及组] 对称二叉树 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 题意: 求一棵子树,关 ...

  4. [Noip 2018][标题统计 龙湖斗 摆渡车 对称二叉树]普及组题解

    啊喂,都已经9102年了,你还在想去年? 这里是一个Noip2018年PJ第二题打爆的OIer,错失省一 但经过了一年,我学到了很多,也有了很多朋友,水平也提高了很多,现在回看当时: 今年的Noip ...

  5. 【18NOIP普及组】对称二叉树(信息学奥赛一本通 1981)(洛谷 5018)

    [题目描述] 一棵有点权的有根树如果满足以下条件,则被轩轩称为对称二叉树: 1.二叉树: 2.将这棵树所有节点的左右子树交换,新树和原树对应位置的结构相同且点权相等. 下图中节点内的数字为权值,节点外 ...

  6. LeetCode【101. 对称二叉树】

    对称二叉树,就是左节点的左节点等于右节点的右节点,左节点的右节点等于右节点的左节点. 很自然就想到迭代与递归,可以创建一个新的函数,就是另一个函数不断的判断,返回在主函数. class Solutio ...

  7. 【leetcode-101】 对称二叉树

    101. 对称二叉树 (1过) 给定一个二叉树,检查它是否是镜像对称的. 例如,二叉树 [1,2,2,3,4,4,3] 是对称的. 1 / \ 2 2 / \ / \ 3 4 4 3 但是下面这个 [ ...

  8. 【洛谷P5018】对称二叉树

    题目大意:定义对称二叉树为每个节点的左右子树交换后与原二叉树仍同构的二叉树,求给定的二叉树的最大对称二叉子树的大小. 代码如下 #include <bits/stdc++.h> using ...

  9. 判断对称二叉树 python代码

    对称二叉树的含义非常容易理解,左右子树关于根节点对称,具体来讲,对于一颗对称二叉树的每一颗子树,以穿过根节点的直线为对称轴,左边子树的左节点=右边子树的右节点,左边子树的右节点=左边子树的左节点.所以 ...

随机推荐

  1. ORA-00907: 缺失右括号(通用解决办法)

    PL/SQL 的SQL语句可以执行,但是放在hibernate中,后台打印,出现了错误. 错误的SQL解析:黄色为错误部分 Hibernate:      select         examine ...

  2. Keys.BACKSPACE Keys.SPACE

    browser.find_element_by_xpath(xp_newpage).send_keys(Keys.SPACE)browser.find_element_by_xpath(xp_newp ...

  3. Oracle 11g密码过期问题及解决方案

    问题: 在自用的一个系统里,连接的是本地自建的一个数据库.用sqldeveloper登录数据库.提示如下图: 提示:密码过期 解决方案: 密码过期一般存在两种可能: 由于Oracle中默认在defau ...

  4. [Codeforces 339D] Xenia and Bit Operations

    [题目链接] https://codeforces.com/problemset/problem/339/D [算法] 线段树模拟即可 时间复杂度 :O(MN) [代码] #include<bi ...

  5. 迟到的WC2019打铁祭

    这是我最失败的一次考试... 具体过程就不说了,全程划水,掉线.还是自身实力不行啊. 最后文艺汇演,本人是DL24主唱&&rapper,欢迎大家交友.^_^.

  6. 洛谷 P1131 [ ZJOI 2007 ] 时态同步 —— 树形DP

    题目:https://www.luogu.org/problemnew/show/P1131 记录 x 子树内同步的时间 f[x],同步所需代价 g[x]: 直接转移即可,让该儿子子树与其它儿子同步, ...

  7. ASP.NET面试点汇总

    1.维护数据库的完整性.一致性.你喜欢用触发器还是自写业务逻辑?为什么答:尽可能用约束(包括CHECK.主键.唯一键.外键.非空字段)实现,这种方式的效率最好:其次用触发器,这种方式可以保证无论何种业 ...

  8. js数值型遇0开始自动转换为8进制

    如题,今天在项目更新时发现了js的这个自动转换问题,代码如下: var num = 0110; render:function(num){       var html="<a hre ...

  9. bzoj 1637: [Usaco2007 Mar]Balanced Lineup【瞎搞】

    我是怎么想出来的-- 把种族为0的都变成-1,按位置x排升序之后,s[i]表示种族前缀和,想要取(l,r)的话就要\( s[r]-s[l-1]==0 s[r]==s[l-1] \),用一个map存每个 ...

  10. [Swift通天遁地]一、超级工具-(11)使用EZLoadingActivity制作Loading加载等待动画

    ★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★➤微信公众号:山青咏芝(shanqingyongzhi)➤博客园地址:山青咏芝(https://www.cnblogs. ...