2018NOIP普及T4---对称二叉树
题目 对称二叉树
思路
检查是否符合对称条件
条件很简单——结构对称&&点权对称
要做到点权对称其实也就顺便结构对称了
于是条件可以简化为点权对称
可以考虑并行搜索
bool con(int l,int r) {
if(l == -&&r == -)
return ;
if(l == -||r == -)
return ;
if(w[l] == w[r])
if(check(l,r))
return ;
return ;
}
bool check(int x,int y) {
if(x == -&&y == -)
return ;
if(x == -||y == -)
return ;
if(w[x] != w[y])
return ;
int l = Root[x].l,l1 = Root[y].l;
int r = Root[y].r,r1 = Root[x].r;
if(con(l,r)&&con(l1,r1))
return ;
return ;
}
信仰深搜
就三个点

你就装作上面还有一个点
int dfs(int x) {
if(x == -) return ;
if(check(Root[x].l,Root[x].r)) {
int ans = Find(x) + ;
return ans;
}
int ans = max(dfs(Root[x].l),dfs(Root[x].r));
return ans;
}
找答案
加一指根节点
int Find(int x) {
int q = ;
int l = Root[x].l;
int r = Root[x].r;
if(l != -) q += Find(l) + ;
if(r != -) q += Find(r) + ;
return q;
}
另外
读入时要记录这样几个玩意儿
for(i = ;i <= n;i++)
scanf("%d",&w[i]);
for(i = ;i <= n;i++)
scanf("%d%d",&Root[i].l,&Root[i].r);
code
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define M 1000001
using namespace std;
int w[M];
struct N {
int l,r;
}Root[M];
bool con(int,int);
bool check(int,int);
//两个函数相互递归调用,并行搜索检查是否符合要求
int dfs(int);
//核心
int Find(int);
//其实就是找有多少个点
int main() {
int i,n;
scanf("%d",&n);
for(i = ;i <= n;i++)
scanf("%d",&w[i]);
for(i = ;i <= n;i++)
scanf("%d%d",&Root[i].l,&Root[i].r);
int ans = dfs();
printf("%d",ans);
return ;
} bool con(int l,int r) {
if(l == -&&r == -)
return ;
if(l == -||r == -)
return ;
if(w[l] == w[r])
if(check(l,r))
return ;
return ;
}
bool check(int x,int y) {
if(x == -&&y == -)
return ;
if(x == -||y == -)
return ;
if(w[x] != w[y])
return ;
int l = Root[x].l,l1 = Root[y].l;
int r = Root[y].r,r1 = Root[x].r;
if(con(l,r)&&con(l1,r1))
return ;
return ;
}
int Find(int x) {
int q = ;
int l = Root[x].l;
int r = Root[x].r;
if(l != -) q += Find(l) + ;
if(r != -) q += Find(r) + ;
return q;
}
int dfs(int x) {
if(x == -) return ;
if(check(Root[x].l,Root[x].r)) {
int ans = Find(x) + ;
return ans;
}
int ans = max(dfs(Root[x].l),dfs(Root[x].r));
return ans;
}
总结
信仰很重要
这代码很慢但不至于卡常,还有大量可优化地方,此处不再赘述
它非常好理解,相信任何人都能写出比这更优秀的代码
2018NOIP普及T4---对称二叉树的更多相关文章
- P5018 [NOIP2018 普及组] 对称二叉树
P5018 [NOIP2018 普及组] 对称二叉树 题目 P5018 思路 通过hash值来判断左右树是否相等 \(hl[i]\) 与 \(Hl[i]\) 是防止hash冲突, \(r\) 同理 注 ...
- [NOIP2018 PJ T4]对称二叉树
题目大意:问一棵有根带权二叉树中最大的对称二叉树子树,对称二叉树为需满足将这棵树所有节点的左右子树交换,新树和原树对应位置的结构相同且点权相等. 题解:在对称二叉树中,对于深度相同的两个节点$u,v$ ...
- 2021.08.09 P5018 对称二叉树(树形结构)
2021.08.09 P5018 对称二叉树(树形结构) [P5018 NOIP2018 普及组] 对称二叉树 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 题意: 求一棵子树,关 ...
- [Noip 2018][标题统计 龙湖斗 摆渡车 对称二叉树]普及组题解
啊喂,都已经9102年了,你还在想去年? 这里是一个Noip2018年PJ第二题打爆的OIer,错失省一 但经过了一年,我学到了很多,也有了很多朋友,水平也提高了很多,现在回看当时: 今年的Noip ...
- 【18NOIP普及组】对称二叉树(信息学奥赛一本通 1981)(洛谷 5018)
[题目描述] 一棵有点权的有根树如果满足以下条件,则被轩轩称为对称二叉树: 1.二叉树: 2.将这棵树所有节点的左右子树交换,新树和原树对应位置的结构相同且点权相等. 下图中节点内的数字为权值,节点外 ...
- LeetCode【101. 对称二叉树】
对称二叉树,就是左节点的左节点等于右节点的右节点,左节点的右节点等于右节点的左节点. 很自然就想到迭代与递归,可以创建一个新的函数,就是另一个函数不断的判断,返回在主函数. class Solutio ...
- 【leetcode-101】 对称二叉树
101. 对称二叉树 (1过) 给定一个二叉树,检查它是否是镜像对称的. 例如,二叉树 [1,2,2,3,4,4,3] 是对称的. 1 / \ 2 2 / \ / \ 3 4 4 3 但是下面这个 [ ...
- 【洛谷P5018】对称二叉树
题目大意:定义对称二叉树为每个节点的左右子树交换后与原二叉树仍同构的二叉树,求给定的二叉树的最大对称二叉子树的大小. 代码如下 #include <bits/stdc++.h> using ...
- 判断对称二叉树 python代码
对称二叉树的含义非常容易理解,左右子树关于根节点对称,具体来讲,对于一颗对称二叉树的每一颗子树,以穿过根节点的直线为对称轴,左边子树的左节点=右边子树的右节点,左边子树的右节点=左边子树的左节点.所以 ...
随机推荐
- 洛谷P1328==codevs3716 生活大爆炸版石头剪刀布[NOIP 2014 day1 T1]
P1328 生活大爆炸版石头剪刀布 1.8K通过 2.6K提交 题目提供者2014白永忻 标签模拟NOIp提高组2014 难度普及- 提交该题 讨论 题解 记录 最新讨论 Who can help m ...
- SQLyog软件里无法插入中文(即由默认的latin1改成UTF8编码格式)
问题详情: 无法插入中文? 解决办法: 需要修改编码格式,由默认的latin1改为utf8. 改成, 成功!
- MQTT Android端对比
根据收集到的信息,MQTT的Android端项目有这些 后面打算分别研究下
- Shell脚本下条件测试(eq.ne.....)(转载)
转载:http://cxj632840815.blog.51cto.com/3511863/1168709 Shell编程中的条件测试 在Linux编程中经常会用到判断数值的大小,字符串是否为空这样或 ...
- SQL Server 方言类型映射问题
关于SQL Server的类型映射问题,例如,nvarchar无法进行hibernate类型映射,需要通过convert进行类型转换方可进行获取
- 栗染-Not enough physical memory is available to power on this virtual machine with its configured settings.
这是在打开虚拟机的时候报的错 解决办法:打开虚拟机的时候选择以管理员身份运行()目测可以 原文参考来自:http://blog.csdn.net/qq_35757415/article/details ...
- P2470 [SCOI2007]压缩
传送门 区间dp,记\(dp(l,r,t)\)表示区间\((l,r)\),\(t\)表示这个区间中能不能放\(M\).如果可以,枚举中间哪里放\(M\)来压缩.也可以不压缩,后面直接跟上去.如果左右重 ...
- 数组去重----es6&es5&数组对象去重
es6方法: 普通数组: 1.使用Array.from(new Set(arr)); /* * @param oldArr 带有重复项的旧数组 * @param newArr 去除重复项之后的新数组 ...
- WPF 添加 gif 图片
1. 如何在wpf窗体中添加gif动态图片: https://stackoverflow.com/questions/210922/how-do-i-get-an-animated-gif-to-wo ...
- 记录sql操作
需求:一个a表的A列等于b表的B列 但拥有的相同列C列值不相同 需要将其改成一样的 UPDATE vd_auth_switch vas,tb_student ts set vas.class_id = ...