1040: Schedule

Time Limit: 500 MS  Memory Limit: 64 MB
Submit: 12  Solved: 2
[Submit][Status][Web Board]

Description

  Resently, loneknight is doing research on job shop schedule problem(JSP for short). Let us take a look at JSP, there are n jobs and m machines, and every job must be processed in every machines, with a process time t[i,j] for job i being processed in machines j. One restrain is that the order for each job processed in machines is fixed, which means that for every job i, there is a process oder (a[i,1], a[i,2], ..., a[i,m]), job i must processed in machine a[i,1] first then a[i,2], ..., a[i,m]. Another restrain is every machine can process amost one job at any time, and every job can be process in amost one machine at any time. The problem is to find a schedule fit this restrains, that make the end time for all jobs, namely the makespan is minimum. Because of the fact that JSP is a NP-Complete problem, loneknight try using simulated anealing and gene algorithm to construct a heuristics algorithm for it. In developing such algorithm for JSP, he confront with a problem that if a schedule is already given, what is the makespan of this schedule, now this your task to solve this problem.

Input

  There are mutiple test cases in the input. The beginning of each case is n, the number of jobs, m, the number of machines. (0 < n,m <= 300) Each follow three components. First is a nxm matrix, the value in the ith row and jth column is t[i,j]. (0 <= t[i,j] < 100) Second is a nxm matrix, the jobs process order, the value in the ith row and jth column is a[i,j]. Third is a mxn matrix the machines process order, the value in the ith row and jth column is b[i,j], (b[i,1], b[i,2], ..., b[i,n]) is the jobs process order in machine i, which means machine i process b[i,1] first, then b[i,2], ..., b[i,n]. (jobs and machines are indexed from 1) The input end with EOF

Output

  For each test case, you should output a single integer, which is the makespan for that schedule in a single line.

Sample Input

3 3
83 86 77 
15 93 35 
86 92 49

3 1 2 
3 1 2 
1 3 2

1 2 3 
1 3 2 
1 2 3

Sample Output

495

HINT

 

Source

[Submit][Status][Web Board]

题目链接:

  http://acm.xmu.edu.cn/JudgeOnline/problem.php?id=1040

题目大意:

  有N个任务,M台机器,每个任务都必须在M台机器上运行一次才行。

  任务i在机器j上的运行时间为T[i][j]

  任务i必须满足先在机器A[i][1]上运行完才能在A[i][2]上,A[i][3]...A[i][m]上(按A[i]的顺序运行)

  机器j必须满足先运行任务B[j][1]才能再运行B[j][2],...,B[j][n](按B[j]顺序运行)

  问所有任务完成的时间。

题目思路:

  【拓扑排序】

  首先可以知道,如果一个任务在某一个机器上做需要之前的步骤都已经完成,每一个机器做当前任务也需要之前的任务均完成

  所以按照这个建图,按照第i个任务第j个机器设为节点A[i][j]。由于每个任务都有机器的先后顺序,每个机器也有任务的先后顺序

  所以A[i][j]往它的下一个任务,下一个机器连一条边。

  (一开始用SPFA写T了。。)  

  之后拓扑排序,每次更新最长路径的值。最后的答案即为解。

  d[xx][yy]=max{ d[x][y]+t[xx][yy] }

  

 /****************************************************

     Author : Coolxxx
Copyright 2017 by Coolxxx. All rights reserved.
BLOG : http://blog.csdn.net/u010568270 ****************************************************/
#include<bits/stdc++.h>
#pragma comment(linker,"/STACK:1024000000,1024000000")
#define abs(a) ((a)>0?(a):(-(a)))
#define lowbit(a) (a&(-a))
#define sqr(a) ((a)*(a))
#define mem(a,b) memset(a,b,sizeof(a))
const double EPS=1e-;
const int J=;
const int MOD=;
const int MAX=0x7f7f7f7f;
const double PI=3.14159265358979323;
const int N=;
using namespace std;
typedef long long LL;
double anss;
LL aans;
int cas,cass;
int n,m,lll,ans;
int t[N][N],a[N][N],b[N][N],d[N][N],in[N][N];
int nex[N][N][][];
void tuopu()
{
int i,j,x,y,xx,yy;
mem(d,);
queue<int>qx,qy;
for(i=;i<=n;i++)
{
if(!in[i][a[i][]])
{
d[i][a[i][]]=t[i][a[i][]];
qx.push(i);
qy.push(a[i][]);
}
}
while(!qx.empty())
{
x=qx.front();qx.pop();
y=qy.front();qy.pop();
for(i=;i<;i++)
{
xx=nex[x][y][i][];
yy=nex[x][y][i][];
if(!x || !y)continue;
d[xx][yy]=max(d[xx][yy],d[x][y]+t[xx][yy]);
if(!--in[xx][yy])
{
qx.push(xx);
qy.push(yy);
}
}
ans=max(ans,d[x][y]);
}
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("1.txt","r",stdin);
// freopen("2.txt","w",stdout);
#endif
int i,j,k,l;
int x,y,z;
// for(scanf("%d",&cass);cass;cass--)
// for(scanf("%d",&cas),cass=1;cass<=cas;cass++)
// while(~scanf("%s",s))
while(~scanf("%d",&n))
{
ans=;
mem(nex,);mem(in,);
scanf("%d",&m);
for(i=;i<=n;i++)
for(j=;j<=m;j++)
scanf("%d",&t[i][j]);
for(i=;i<=n;i++)
for(j=;j<=m;j++)
scanf("%d",&a[i][j]);
for(i=;i<=m;i++)
for(j=;j<=n;j++)
scanf("%d",&b[i][j]);
for(i=;i<=n;i++)
{
for(j=;j<m;j++)
{
nex[i][a[i][j]][][]=i,
nex[i][a[i][j]][][]=a[i][j+];
in[i][a[i][j+]]++;
}
}
for(i=;i<=m;i++)
{
for(j=;j<n;j++)
{
nex[b[i][j]][i][][]=b[i][j+],
nex[b[i][j]][i][][]=i;
in[b[i][j+]][i]++;
}
}
tuopu();
printf("%d\n",ans);
}
return ;
}
/*
// //
*/

XMU 1040 Schedule 【拓扑排序】的更多相关文章

  1. LeetCode 210. Course Schedule II(拓扑排序-求有向图中是否存在环)

    和LeetCode 207. Course Schedule(拓扑排序-求有向图中是否存在环)类似. 注意到.在for (auto p: prerequistites)中特判了输入中可能出现的平行边或 ...

  2. LeetCode 207. Course Schedule(拓扑排序)

    题目 There are a total of n courses you have to take, labeled from 0 to n - 1. Some courses may have p ...

  3. 2-sat 输出任意一组可行解&拓扑排序+缩点 poj3683

    Priest John's Busiest Day Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 8170   Accept ...

  4. Poj 3683-Priest John's Busiest Day 2-sat,拓扑排序

    Priest John's Busiest Day Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 8872   Accept ...

  5. LeetCode编程训练 - 拓扑排序(Topological Sort)

    拓扑排序基础 拓扑排序用于解决有向无环图(DAG,Directed Acyclic Graph)按依赖关系排线性序列问题,直白地说解决这样的问题:有一组数据,其中一些数据依赖其他,问能否按依赖关系排序 ...

  6. 拓扑排序 Topological Sort

    2018-05-02 16:26:07 在计算机科学领域,有向图的拓扑排序或拓扑排序是其顶点的线性排序,使得对于从顶点u到顶点v的每个有向边uv,u在排序中都在v前.例如,图形的顶点可以表示要执行的任 ...

  7. hdu 4857(好题,反向拓扑排序)

    逃生 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submissi ...

  8. Gym 100792 King's Rout 拓扑排序

    K. King's Rout time limit per test 4.0 s memory limit per test 512 MB input standard input output st ...

  9. poj 3683(2-sat+拓扑排序)

    Priest John's Busiest Day Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 11127   Accep ...

随机推荐

  1. Chrome插件:微信公众号自动登录(chrome.extension)

    manifest.json: { "manifest_version": 2, "name": "WX.AutoLogin", " ...

  2. redis 的安装及常用的命令

    前言: redis是一个key-value的存储系统,value支持string.list.set.zset.hash五种类型,且支持数据的本地存储 一.安装redis 前提:linux下需要安装了m ...

  3. Django中配置自定义日志系统

  4. ASP.NET MVC的帮助类HtmlHelper和UrlHelper

    在ASP.NET MVC框架中没有了自己的控件,页面显示完全就回到了写html代码的年代.还好在asp.net mvc框架中也有自带的HtmlHelper和UrlHelper两个帮助类.另外在MvcC ...

  5. jsp获取绝对路径----${pageContext.request.contextPath}

    JSP取得绝对路径 在JavaWeb开发中,常使用绝对路径的方式来引入JavaScript和CSS文件,这样可以避免因为目录变动导致引入文件找不到的情况,常用的做法如下: 一.使用${pageCont ...

  6. noip模拟赛 残

    分析:这道题有点丧病啊......斐波那契数列本来增长就快,n <= 10^100又套2层,看到题目就让人绝望.不过这种题目还是有套路的.首先求斐波那契数列肯定要用到矩阵快速幂,外层的f可以通过 ...

  7. bzoj3262 陌上花开 cdq+树状数组

    [bzoj3262]陌上花开 Description 有n朵花,每朵花有三个属性:花形(s).颜色(c).气味(m),又三个整数表示.现要对每朵花评级,一朵花的级别是它拥有的美丽能超过的花的数量.定义 ...

  8. [ C语言版 ] 数独计算器 [ 搜索剪枝法 ]

    [原创]转载请注明出处. [浙江大学 程序设计专题] 使用方法:按提示输入方式为9*9的矩阵,0表示未知数. 为解决这一问题,我们也尝试了两种方法,准确的说,是第一种方法太慢了,我们对它进行了优化. ...

  9. 【NOIP2017练习】跳跃切除子序列(模拟)

    题意: 思路: 已放弃 #include <bits/stdc++.h> typedef long long LL; int main(){ int T; scanf("%d&q ...

  10. 【BZOJ4710】分特产(容斥原理,组合计数)

    题意:有m种特产,第i种有a[i]个 有n个同学分特产,要求: 1.恰好分完 2.每个人至少要分到一个 求方案数模10^9+7 n,m,a[i]<=1000 思路:WYZ作业 首先考虑对于每一种 ...