HDU 6073 Matching In Multiplication dfs遍历环 + 拓扑
Matching In Multiplication
Problem Description
In the mathematical discipline of graph theory, a bipartite graph is a graph whose vertices can be divided into two disjoint sets U and V (that is, U and V are each independent sets) such that every edge connects a vertex in U to one in V. Vertex sets U and V are usually called the parts of the graph. Equivalently, a bipartite graph is a graph that does not contain any odd-length cycles. A matching in a graph is a set of edges without common vertices. A perfect matching is a matching that each vertice is covered by an edge in the set.

Little Q misunderstands the definition of bipartite graph, he thinks the size of U is equal to the size of V, and for each vertex p in U, there are exactly two edges from p. Based on such weighted graph, he defines the weight of a perfect matching as the product of all the edges' weight, and the weight of a graph is the sum of all the perfect matchings' weight.
Please write a program to compute the weight of a weighted ''bipartite graph'' made by Little Q.
Input
The first line of the input contains an integer T(1≤T≤15), denoting the number of test cases.
In each test case, there is an integer n(1≤n≤300000) in the first line, denoting the size of U. The vertex in U and V are labeled by 1,2,...,n.
For the next n lines, each line contains 4 integers vi,1,wi,1,vi,2,wi,2(1≤vi,j≤n,1≤wi,j≤109), denoting there is an edge between Ui and Vvi,1, weighted wi,1, and there is another edge between Ui and Vvi,2, weighted wi,2.
It is guaranteed that each graph has at least one perfect matchings, and there are at most one edge between every pair of vertex.
Output
For each test case, print a single line containing an integer, denoting the weight of the given graph. Since the answer may be very large, please print the answer modulo 998244353.
Sample Input
1
2
2 1 1 4
1 4 2 3
Sample Output
16
题意:
给你一个图,n点 2*n边,有边权。
左边的1~n个点出度都为2,且都连向右边的点,两点之间,没有重边,求出每种完美匹配下各边乘积的总和
题解:
不好好写就会wa死你哦,咕咕咕
首先如果一个点的度数为11,那么它的匹配方案是固定的,继而我们可以去掉这一对点。通过拓扑我们可以不断去掉所有度数为11的点。
那么剩下的图中左右各有mm个点,每个点度数都不小于22,且左边每个点度数都是22,而右侧总度数是2m2m,
因此右侧只能是每个点度数都是22。这说明这个图每个连通块是个环,在环上间隔着取即可,一共两种方案。
时间复杂度O(n)O(n)
#include<bits/stdc++.h>
using namespace std;
#pragma comment(linker, "/STACK:102400000,102400000")
#define ls i<<1
#define rs ls | 1
#define mid ((ll+rr)>>1)
#define pii pair<int,int>
#define MP make_pair
typedef long long LL;
const long long INF = 1e18+1LL;
const double pi = acos(-1.0);
const int N = 1e6+, M = 1e3+,inf = 2e9; const LL mod = 998244353LL; queue<pii > q;
int vis[N],done[N],d[N],n,T,zhong;
LL ans1,ans2;
vector<pii > G[N];
void init() {
for(int i = ; i <= *n; ++i)
G[i].clear(),vis[i] = ,done[i] = ,d[i] = ;
}
void dfs(int u,int f,int p) {
vis[u] = ;
int flag = ;
for(int i = ; i < G[u].size(); ++i) {
int to = G[u][i].first;
if(vis[to]) continue;
flag = ;
if(!p) ans1 = 1LL * ans1 * G[u][i].second % mod;
else ans2 = 1LL * ans2 * G[u][i].second % mod;
dfs(to,u, - p);
}
if(flag) {
for(int i = ; i < G[u].size(); ++i) {
int to = G[u][i].first;
if(to != zhong) continue;
if(!p) ans1 = 1LL * ans1 * G[u][i].second % mod;
else ans2 = 1LL * ans2 * G[u][i].second % mod;
}
}
}
void make_faiil(int u,int f,int p) {
done[u] = ;
vis[u] =;
for(int i = ; i < G[u].size(); ++i) {
int to = G[u][i].first;
if(to == f || done[to]) continue;
make_faiil(to,u, - p);
}
}
int main() {
scanf("%d",&T);
while(T--) {
scanf("%d",&n);
init();
for(int i = ; i <= n; ++i) {
int x,y;
scanf("%d%d",&x,&y);
d[i] += ;
d[x + n] += ;
G[i].push_back(MP(x + n,y));
G[x + n].push_back(MP(i,y)); scanf("%d%d",&x,&y);
d[i] += ;
d[x + n] += ;
G[i].push_back(MP(x + n,y));
G[x + n].push_back(MP(i,y));
}
int ok = ;
while(!q.empty()) q.pop();
for(int i = n+; i <= *n; ++i) {
if(d[i] == ) {
q.push(MP(i,));
vis[i] = ;
}
}
LL ans = 1LL;
while(!q.empty()) {
pii k = q.front();
q.pop();
for(int i = ; i < G[k.first].size(); ++i) {
int to = G[k.first][i].first;
if(vis[to]) continue;
d[to] -= ;
if(d[to] == ) {
if(!k.second)ans = ans * G[k.first][i].second % mod;
q.push(MP(to,!k.second));
vis[to] = ;
}
}
}
//cout<<ans<<endl;
LL tmp1 = ans,tmp2 = ;
for(int i = ; i <= *n; ++i) {
if(!vis[i]){
// cout<<"huasndina " << i<<endl;
ans1 = 1LL,ans2 = 1LL;
zhong = i;
dfs(i,-,);
LL tmptmp = (ans1 + ans2) % mod;
ans = ans * tmptmp % mod;
}
}
printf("%lld\n",(ans)%mod);
}
return ;
} /*
10
5
1 1 2 3
1 2 3 4
3 5 4 7
3 6 4 8
4 9 5 10
4920
*/
HDU 6073 Matching In Multiplication dfs遍历环 + 拓扑的更多相关文章
- HDU 6073 - Matching In Multiplication | 2017 Multi-University Training Contest 4
/* HDU 6073 - Matching In Multiplication [ 图论 ] | 2017 Multi-University Training Contest 4 题意: 定义一张二 ...
- HDU 6073 Matching In Multiplication(拓扑排序)
Matching In Multiplication Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 524288/524288 K ( ...
- HDU 6073 Matching In Multiplication —— 2017 Multi-University Training 4
Matching In Multiplication Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 524288/524288 K ( ...
- HDU 6073 Matching In Multiplication(拓扑排序+思维)
http://acm.hdu.edu.cn/showproblem.php?pid=6073 题意:有个二分图,左边和右边的顶点数相同,左边的顶点每个顶点度数为2.现在有个屌丝理解错了最佳完美匹配,它 ...
- 2017 ACM暑期多校联合训练 - Team 4 1007 HDU 6073 Matching In Multiplication (模拟)
题目链接 Problem Description In the mathematical discipline of graph theory, a bipartite graph is a grap ...
- hdu6073 Matching In Multiplication 分析+拓扑序
Matching In Multiplication Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 524288/524288 K ( ...
- 2017 多校4 Matching In Multiplication(二分图)
Matching In Multiplication 题解: 首先如果一个点的度数为1,那么它的匹配方案是固定的,继而我们可以去掉这一对点.通过拓扑我们可以不断去掉所有度数为1的点. 那么剩下的图中左 ...
- HDU 1241 Oil Deposits --- 入门DFS
HDU 1241 题目大意:给定一块油田,求其连通块的数目.上下左右斜对角相邻的@属于同一个连通块. 解题思路:对每一个@进行dfs遍历并标记访问状态,一次dfs可以访问一个连通块,最后统计数量. / ...
- HDU 2553(N皇后)(DFS)
http://acm.hdu.edu.cn/showproblem.php?pid=2553 i表示行,map[i]表示列,然后用DFS遍历回溯 可以参考这篇文章: http://blog.csdn. ...
随机推荐
- JS事件兼容性
事件代理的时候,使用事件对象中的srcElement属性,获取触发元素.IE浏览器支持window.event.srcElement , 而firefox支持window.event.target. ...
- 【Luogu】P1352没有上司的舞会(树形DP)
题目链接 设f[i][0]表示第i个人不去舞会时子树的最大欢乐度,f[i][1]表示第i个人去舞会时子树的最大欢乐度. 则有状态转移方程:f[i][0]+=∑max(f[to][0],f[to][1] ...
- 刷题总结——竞赛得分(ssoj)
题目: 题目描述 ZZH 在经历了无数次学科竞赛的失败以后,得到了一个真理:做一题就要对一题!但是要完全正确地做对一题是要花很多时间(包括调试时间),而竞赛的时间有限.所以开始做题之前最好先认真审题, ...
- 【树状数组区间修改区间求和】codevs 1082 线段树练习 3
http://codevs.cn/problem/1082/ [AC] #include<bits/stdc++.h> using namespace std; typedef long ...
- Spring JdbcTemplate操作小结
Spring 提供了JdbcTemplate 来封装数据库jdbc操作细节: 包括: 数据库连接[打开/关闭] ,异常转义 ,SQL执行 ,查询结果的转换 使用模板方式封装 jdbc数据库操作-固定流 ...
- html--添加、删除滚动条
1:若想给div添加滚动条: style="overflow-y:scroll";(添加纵向滚动条) style="overflow-x:scroll";(添加 ...
- 省赛i题/求1~n内所有数对(x,y),满足最大公约数是质数的对数
求1~n内所有数对(x,y),gcd(x,y)=质数,的对数. 思路:用f[n]求出,含n的对数,最后用sum[n]求和. 对于gcd(x,y)=a(设x<=y,a是质数),则必有gcd(x/a ...
- PC下ubuntu查找PC串口并加入用户组
1. 查看ttyS0隶属的组:ls -l /dev/ttyS0 //发现隶属于dialout组 输出: crw-rw---- 1 root dialout 4, 64 9月 9 08:23 /d ...
- 洛谷 P4318 完全平方数
题目描述 小 X 自幼就很喜欢数.但奇怪的是,他十分讨厌完全平方数.他觉得这些数看起来很令人难受.由此,他也讨厌所有是完全平方数的正整数倍的数.然而这丝毫不影响他对其他数的热爱. 这天是小X的生日,小 ...
- 注解@RequestMapping value 用法
本文引自:https://blog.csdn.net/qq_33811662/article/details/80864784 RequestMapping是一个用来处理请求地址映射的注解,可用于类. ...