Matching In Multiplication

Problem Description
In the mathematical discipline of graph theory, a bipartite graph is a graph whose vertices can be divided into two disjoint sets U and V (that is, U and V are each independent sets) such that every edge connects a vertex in U to one in V. Vertex sets U and V are usually called the parts of the graph. Equivalently, a bipartite graph is a graph that does not contain any odd-length cycles. A matching in a graph is a set of edges without common vertices. A perfect matching is a matching that each vertice is covered by an edge in the set.

                       

Little Q misunderstands the definition of bipartite graph, he thinks the size of U is equal to the size of V, and for each vertex p in U, there are exactly two edges from p. Based on such weighted graph, he defines the weight of a perfect matching as the product of all the edges' weight, and the weight of a graph is the sum of all the perfect matchings' weight.

Please write a program to compute the weight of a weighted ''bipartite graph'' made by Little Q.

Input
The first line of the input contains an integer T(1≤T≤15), denoting the number of test cases.

In each test case, there is an integer n(1≤n≤300000) in the first line, denoting the size of U. The vertex in U and V are labeled by 1,2,...,n.

For the next n lines, each line contains 4 integers vi,1,wi,1,vi,2,wi,2(1≤vi,j≤n,1≤wi,j≤109), denoting there is an edge between Ui and Vvi,1, weighted wi,1, and there is another edge between Ui and Vvi,2, weighted wi,2.

It is guaranteed that each graph has at least one perfect matchings, and there are at most one edge between every pair of vertex.

Output
For each test case, print a single line containing an integer, denoting the weight of the given graph. Since the answer may be very large, please print the answer modulo 998244353.

Sample Input
1
2
2 1 1 4
1 4 2 3

Sample Output
16

题意:

  给你一个图,n点 2*n边,有边权。

  左边的1~n个点出度都为2,且都连向右边的点,两点之间,没有重边,求出每种完美匹配下各边乘积的总和

题解:

  不好好写就会wa死你哦,咕咕咕

  首先如果一个点的度数为11,那么它的匹配方案是固定的,继而我们可以去掉这一对点。通过拓扑我们可以不断去掉所有度数为11的点。

  那么剩下的图中左右各有mm个点,每个点度数都不小于22,且左边每个点度数都是22,而右侧总度数是2m2m,

  因此右侧只能是每个点度数都是22。这说明这个图每个连通块是个环,在环上间隔着取即可,一共两种方案。

  时间复杂度O(n)O(n)

#include<bits/stdc++.h>
using namespace std;
#pragma comment(linker, "/STACK:102400000,102400000")
#define ls i<<1
#define rs ls | 1
#define mid ((ll+rr)>>1)
#define pii pair<int,int>
#define MP make_pair
typedef long long LL;
const long long INF = 1e18+1LL;
const double pi = acos(-1.0);
const int N = 1e6+, M = 1e3+,inf = 2e9; const LL mod = 998244353LL; queue<pii > q;
int vis[N],done[N],d[N],n,T,zhong;
LL ans1,ans2;
vector<pii > G[N];
void init() {
for(int i = ; i <= *n; ++i)
G[i].clear(),vis[i] = ,done[i] = ,d[i] = ;
}
void dfs(int u,int f,int p) {
vis[u] = ;
int flag = ;
for(int i = ; i < G[u].size(); ++i) {
int to = G[u][i].first;
if(vis[to]) continue;
flag = ;
if(!p) ans1 = 1LL * ans1 * G[u][i].second % mod;
else ans2 = 1LL * ans2 * G[u][i].second % mod;
dfs(to,u, - p);
}
if(flag) {
for(int i = ; i < G[u].size(); ++i) {
int to = G[u][i].first;
if(to != zhong) continue;
if(!p) ans1 = 1LL * ans1 * G[u][i].second % mod;
else ans2 = 1LL * ans2 * G[u][i].second % mod;
}
}
}
void make_faiil(int u,int f,int p) {
done[u] = ;
vis[u] =;
for(int i = ; i < G[u].size(); ++i) {
int to = G[u][i].first;
if(to == f || done[to]) continue;
make_faiil(to,u, - p);
}
}
int main() {
scanf("%d",&T);
while(T--) {
scanf("%d",&n);
init();
for(int i = ; i <= n; ++i) {
int x,y;
scanf("%d%d",&x,&y);
d[i] += ;
d[x + n] += ;
G[i].push_back(MP(x + n,y));
G[x + n].push_back(MP(i,y)); scanf("%d%d",&x,&y);
d[i] += ;
d[x + n] += ;
G[i].push_back(MP(x + n,y));
G[x + n].push_back(MP(i,y));
}
int ok = ;
while(!q.empty()) q.pop();
for(int i = n+; i <= *n; ++i) {
if(d[i] == ) {
q.push(MP(i,));
vis[i] = ;
}
}
LL ans = 1LL;
while(!q.empty()) {
pii k = q.front();
q.pop();
for(int i = ; i < G[k.first].size(); ++i) {
int to = G[k.first][i].first;
if(vis[to]) continue;
d[to] -= ;
if(d[to] == ) {
if(!k.second)ans = ans * G[k.first][i].second % mod;
q.push(MP(to,!k.second));
vis[to] = ;
}
}
}
//cout<<ans<<endl;
LL tmp1 = ans,tmp2 = ;
for(int i = ; i <= *n; ++i) {
if(!vis[i]){
// cout<<"huasndina " << i<<endl;
ans1 = 1LL,ans2 = 1LL;
zhong = i;
dfs(i,-,);
LL tmptmp = (ans1 + ans2) % mod;
ans = ans * tmptmp % mod;
}
}
printf("%lld\n",(ans)%mod);
}
return ;
} /*
10
5
1 1 2 3
1 2 3 4
3 5 4 7
3 6 4 8
4 9 5 10
4920
*/

HDU 6073 Matching In Multiplication dfs遍历环 + 拓扑的更多相关文章

  1. HDU 6073 - Matching In Multiplication | 2017 Multi-University Training Contest 4

    /* HDU 6073 - Matching In Multiplication [ 图论 ] | 2017 Multi-University Training Contest 4 题意: 定义一张二 ...

  2. HDU 6073 Matching In Multiplication(拓扑排序)

    Matching In Multiplication Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 524288/524288 K ( ...

  3. HDU 6073 Matching In Multiplication —— 2017 Multi-University Training 4

    Matching In Multiplication Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 524288/524288 K ( ...

  4. HDU 6073 Matching In Multiplication(拓扑排序+思维)

    http://acm.hdu.edu.cn/showproblem.php?pid=6073 题意:有个二分图,左边和右边的顶点数相同,左边的顶点每个顶点度数为2.现在有个屌丝理解错了最佳完美匹配,它 ...

  5. 2017 ACM暑期多校联合训练 - Team 4 1007 HDU 6073 Matching In Multiplication (模拟)

    题目链接 Problem Description In the mathematical discipline of graph theory, a bipartite graph is a grap ...

  6. hdu6073 Matching In Multiplication 分析+拓扑序

    Matching In Multiplication Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 524288/524288 K ( ...

  7. 2017 多校4 Matching In Multiplication(二分图)

    Matching In Multiplication 题解: 首先如果一个点的度数为1,那么它的匹配方案是固定的,继而我们可以去掉这一对点.通过拓扑我们可以不断去掉所有度数为1的点. 那么剩下的图中左 ...

  8. HDU 1241 Oil Deposits --- 入门DFS

    HDU 1241 题目大意:给定一块油田,求其连通块的数目.上下左右斜对角相邻的@属于同一个连通块. 解题思路:对每一个@进行dfs遍历并标记访问状态,一次dfs可以访问一个连通块,最后统计数量. / ...

  9. HDU 2553(N皇后)(DFS)

    http://acm.hdu.edu.cn/showproblem.php?pid=2553 i表示行,map[i]表示列,然后用DFS遍历回溯 可以参考这篇文章: http://blog.csdn. ...

随机推荐

  1. 怎么创建SpringBoot项目

    上述中讲到了怎么创建SpringBoot项目,那么现在就来介绍下SpringBoot配置文件的两种格式yml和properties 首先呢发上一份application.properties 在放上一 ...

  2. POJ 1330:Nearest Common Ancestors【lca】

    题目大意:唔 就是给你一棵树 和两个点,问你这两个点的LCA是什么 思路:LCA的模板题,要注意的是在并查集合并的时候并不是随意的,而是把叶子节点合到父节点上 #include<cstdio&g ...

  3. NVMe与SCM结合将赋予存储介质的能力

    转自:SCM是什么鬼,NVMe与其结合将赋予存储介质哪些能力? 全SSD闪存阵列在企业级存储得到广泛应用,相比传统机械硬盘,它的延迟.性能和可靠性都有了显著提高.许多早期开发商抓住其闪存技术优势的机遇 ...

  4. hdu 5037 Frog 贪心 dp

    哎,注意细节啊,,,,,,,思维的严密性..... 11699193 2014-09-22 08:46:42 Accepted 5037 796MS 1864K 2204 B G++ czy Frog ...

  5. Python入门--13--爬虫一

    URL的格式一般为(带方括号的是可选的): protocol://hostname[:port]/path/[;parameters][?query]#fragment URL由三部分组成: 第一部分 ...

  6. ftrace笔记

    mount -t debugfs nodev /sys/kernel/debug 在mount后,可以在debug目录下看到tracing目录,该目录包含了ftrace的控制与输出文件. (1) en ...

  7. Spring实战Day5

    3.3自动装配bean的歧义性 产生歧义的原因 找到多个符合条件的组件,如下注入talent时会有两个满足条件的组件 解决方法 标示首选的bean,但是同时标示两个或多个同样会存在歧义 自动装配标示P ...

  8. Spark学习(三): 基本架构及原理

    Apache Spark是一个围绕速度.易用性和复杂分析构建的大数据处理框架,最初在2009年由加州大学伯克利分校的AMPLab开发,并于2010年成为Apache的开源项目之一,与Hadoop和St ...

  9. Go -- 实现二叉搜索树

    树: https://suanfa.herokuapp.com/3%E6%A0%91/binarytree/ 数据结构 首先我们定义需要的数据结构.注意,TreeNode的左右节点都是*TreeNod ...

  10. C#-訪问轰炸机,新建进程,结束进程...(ConsoleApp)---ShinePans

    这个程序能够自己主动打开要打开的网址,而且自己主动结束进程,这样能够达到博文点击流量的添加 program.cs using System; using System.Collections.Gene ...