定义及性质

  AVL树:AVL树是一颗自平衡的二叉搜索树.

  AVL树具有以下性质:

    根的左右子树的高度只差的绝对值不能超过1

    根的左右子树都是 平衡二叉树(AVL树)

百度百科:

  平衡二叉搜索树(Self-balancing binary search tree)又被称为AVL树(有别于AVL算法)

    且具有以下性质:它是一 棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。

    平衡二叉树的常用实现方法有红黑树AVL替罪羊树Treap伸展树等。

       最小二叉平衡树的节点总数的公式如下 F(n)=F(n-1)+F(n-2)+1 这个类似于一个递归的数列

       可以参考Fibonacci(斐波那契)数列,1是根节点,F(n-1)是左子树的节点数量,F(n-2)是右子树的节点数量。

AVL树--插入操作

AVL插入--旋转

代码实现

from bst import BST, BiTreeNode

class AVLNode(BiTreeNode):
def __init__(self, data):
BiTreeNode.__init__(self, data)
self.bf = 0 class AVLTree(BST):
def __init__(self, li=None):
BST.__init__(self, li) def rotate_left(self, p, c):
s2 = c.lchild
p.rchild = s2
if s2:
s2.parent = p c.lchild = p
p.parent = c # 更新bf
if c.bf == 0:
p.bf = 1
c.bf = -1
else:
p.bf = 0
c.bf = 0
return c def rotate_right(self, p, c):
s2 = c.rchild
p.lchild = s2
if s2:
s2.parent = p c.rchild = p
p.parent = c # update bf
if c.bf == 0:
p.bf = -1
c.bf = 1
else:
p.bf = 0
c.bf = 0
return c def rotate_right_left(self, p, c):
g = c.lchild s3 = g.rchild
c.lchild = s3
if s3:
s3.parent = c
g.rchild = c
c.parent = g s2 = g.lchild
p.rchild = s2
if s2:
s2.parent = p
g.lchild = p
p.parent = g # 更新 bf
if g.bf > 0: # g.bf == 1
p.bf = -1
c.bf = 0
elif g.bf == 0:
p.bf = 0
c.bf = 0
else: # g.bf == -1
p.bf = 0
c.bf = 1 g.bf = 0
return g def rotate_left_right(self, p, c):
g = c.rchild s3 = g.lchild
c.rchild = s3
if s3:
s3.parent = c
g.lchild = c
c.parent = g s2 = g.rchild
p.lchild = s2
if s2:
s2.parent = p
g.rchild = p
p.parent = g # 更新 bf
if g.bf < 0: # g.bf == 1
p.bf = 1
c.bf = 0
elif g.bf == 0:
p.bf = 0
c.bf = 0
else: # g.bf == -1
p.bf = 0
c.bf = -1 g.bf = 0
return g def insert_no_rec(self, val):
p = self.root
if not p:
self.root = AVLNode(val)
return
while True:
if val < p.data:
if p.lchild:
p = p.lchild
else:
p.lchild = AVLNode(val)
p.lchild.parent = p
node = p.lchild
break
elif val > p.data:
if p.rchild:
p = p.rchild
else:
p.rchild = AVLNode(val)
p.rchild.parent = p
node = p.rchild
break
else:
return # 更新bf
while node.parent:
if node.parent.lchild == node: # 左孩子
if node.parent.bf < 0: # node.parent.bf=-2 左边深
g = node.parent.parent
if node.bf > 0:
n = self.rotate_left_right(node.parent, node)
else:
n = self.rotate_right(node.parent, node)
elif node.parent.bf > 0:
node.parent.bf = 0
break
else:
node.parent.bf = -1
node = node.parent
continue else: # 右孩子
if node.parent.bf > 0: # node.parent.bf=2 右边深
g = node.parent.parent
if node.bf < 0:
n = self.rotate_right_left(node.parent, node)
else:
n = self.rotate_left(node.parent, node)
elif node.parent.bf < 0:
node.parent.bf = 0
break
else:
node.parent.bf = 1
node = node.parent
continue # 旋转结束后
# 连接旋转后的子树的根和原来的树 n.parent = g
if g:
if node.parent == g.lchild:
g.lchild = n
else:
g.rchild = n
break
else:
self.root = n
break tree = AVLTree([7,3,5,4,2,8,6,9,1])
tree.pre_order(tree.root)
print("")
tree.in_order(tree.root)

AVL树(平衡二叉树)的更多相关文章

  1. 数据结构树之AVL树(平衡二叉树)

    一 什么是AVL树(平衡二叉树): AVL树本质上是一颗二叉查找树,但是它又具有以下特点:它是一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树.在AVL树中任何节 ...

  2. 转:红黑树和AVL树(平衡二叉树)区别

    本文转载至链接:https://blog.csdn.net/u010899985/article/details/80981053 一.AVL树(平衡二叉树) (1)简介 AVL树是带有平衡条件的二叉 ...

  3. 树·AVL树/平衡二叉树

    1.AVL树 带有平衡条件的二叉查找树,所以它必须满足条件: 1 是一棵二叉查找树 2 满足平衡条件 1.1 平衡条件: 1)严格的平衡条件:每个节点都必须有相同高度的左子树和右子树(过于严格而不被使 ...

  4. 图解数据结构树之AVL树

    AVL树(平衡二叉树): AVL树本质上是一颗二叉查找树,但是它又具有以下特点:它是一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树.在AVL树中任何节点的两个子 ...

  5. 单例模式,堆,BST,AVL树,红黑树

    单例模式 第一种(懒汉,线程不安全): public class Singleton { private static Singleton instance; private Singleton () ...

  6. 【数据结构06】二叉平衡树(AVL树)

    目录 一.平衡二叉树定义 二.这货还是不是平衡二叉树? 三.平衡因子 四.如何保持平衡二叉树平衡? 五.平衡二叉树插入节点的四种情况 六.平衡二叉树操作的代码实现 七.AVL树总结 @ 一.平衡二叉树 ...

  7. Java数据结构——AVL树

    AVL树(平衡二叉树)定义 AVL树本质上是一颗二叉查找树,但是它又具有以下特点:它是一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树,并且拥有自平衡机制.在AV ...

  8. 算法与数据结构(十一) 平衡二叉树(AVL树)

    今天的博客是在上一篇博客的基础上进行的延伸.上一篇博客我们主要聊了二叉排序树,详情请戳<二叉排序树的查找.插入与删除>.本篇博客我们就在二叉排序树的基础上来聊聊平衡二叉树,也叫AVL树,A ...

  9. 【数据结构】平衡二叉树—AVL树

    (百度百科)在计算机科学中,AVL树是最先发明的自平衡二叉查找树.在AVL树中任何节点的两个子树的高度最大差别为一,所以它也被称为高度平衡树.查找.插入和删除在平均和最坏情况下都是O(log n).增 ...

  10. 数据结构之平衡二叉树(AVL树)

    平衡二叉树(AVL树)定义如下:平衡二叉树或者是一棵空树,或者是具有以下性质的二叉排序树: (1)它的左子树和右子树的高度之差绝对值不超过1: (2)它的左子树和右子树都是平衡二叉树. AVL树避免了 ...

随机推荐

  1. Redis 脚本及其应用

    参考:http://www.runoob.com/redis/redis-scripting.html Redis 脚本使用 Lua 解释器来执行脚本. Reids 2.6 版本通过内嵌支持 Lua ...

  2. MTK 手机芯片 2014 Roadmap

    注:其中 A53 架构的是 64 位处理器. MT6733 魅蓝 MT6752 魅族 note 联通/移动版 MT6595 魅族 MX4

  3. tomcat重启报错

    一.tomcat重启报java环境变量错 报错信息详细如下: Neither the JAVA_HOME nor the JRE_HOME environment variable is define ...

  4. android keyEvent

    http://developer.android.com/reference/android/view/KeyEvent.html

  5. subclassdlgitem

    subclassdlgitem 该函数用来子类化一个控件. Subclass(子类化)是MFC中最常用的窗体技术之一.子类化完成两个工作:一是把窗体类对象attach到一个windows窗体实体中(即 ...

  6. Java Management Extensions (JMX) Flume

    Lesson: Overview of the JMX Technology (The Java™ Tutorials > Java Management Extensions (JMX)) h ...

  7. Deep Learning 32: 自己写的keras的一个callbacks函数,解决keras中不能在每个epoch实时显示学习速率learning rate的问题

    一.问题: keras中不能在每个epoch实时显示学习速率learning rate,从而方便调试,实际上也是为了调试解决这个问题:Deep Learning 31: 不同版本的keras,对同样的 ...

  8. C# List Find方法

    https://blog.csdn.net/knqiufan/article/details/77847143

  9. locate和grep命令

    这任然是一篇读书笔记,以下内容来源<linux命令速查手册>这本书. 1.locate命令 用文件名或者文件名的部分来搜索文件在系统中的位置.locate不搜索具体目录,而是搜索一个数据库 ...

  10. jLim - 紧凑的 JavaScript 框架

    1. [代码][JavaScript]代码     /*! * jLim Core * * jLim is a small JavaScript base code. It can be used t ...