#define xhxj (Xin Hang senior sister(学姐)) 
If you do not know xhxj, then carefully reading the entire description is very important. 
As the strongest fighting force in UESTC, xhxj grew up in Jintang, a border town of Chengdu. 
Like many god cattles, xhxj has a legendary life: 
2010.04, had not yet begun to learn the algorithm, xhxj won the second prize in the university contest. And in this fall, xhxj got one gold medal and one silver medal of regional contest. In the next year's summer, xhxj was invited to Beijing to attend the astar onsite. A few months later, xhxj got two gold medals and was also qualified for world's final. However, xhxj was defeated by zhymaoiing in the competition that determined who would go to the world's final(there is only one team for every university to send to the world's final) .Now, xhxj is much more stronger than ever,and she will go to the dreaming country to compete in TCO final. 
As you see, xhxj always keeps a short hair(reasons unknown), so she looks like a boy( I will not tell you she is actually a lovely girl), wearing yellow T-shirt. When she is not talking, her round face feels very lovely, attracting others to touch her face gently。Unlike God Luo's, another UESTC god cattle who has cool and noble charm, xhxj is quite approachable, lively, clever. On the other hand,xhxj is very sensitive to the beautiful properties, "this problem has a very good properties",she always said that after ACing a very hard problem. She often helps in finding solutions, even though she is not good at the problems of that type. 
Xhxj loves many games such as,Dota, ocg, mahjong, Starcraft 2, Diablo 3.etc,if you can beat her in any game above, you will get her admire and become a god cattle. She is very concerned with her younger schoolfellows, if she saw someone on a DOTA platform, she would say: "Why do not you go to improve your programming skill". When she receives sincere compliments from others, she would say modestly: "Please don’t flatter at me.(Please don't black)."As she will graduate after no more than one year, xhxj also wants to fall in love. However, the man in her dreams has not yet appeared, so she now prefers girls. 
Another hobby of xhxj is yy(speculation) some magical problems to discover the special properties. For example, when she see a number, she would think whether the digits of a number are strictly increasing. If you consider the number as a string and can get a longest strictly increasing subsequence the length of which is equal to k, the power of this number is k.. It is very simple to determine a single number’s power, but is it also easy to solve this problem with the numbers within an interval? xhxj has a little tired,she want a god cattle to help her solve this problem,the problem is: Determine how many numbers have the power value k in [L,R] in O(1)time. 
For the first one to solve this problem,xhxj will upgrade 20 favorability rate。

InputFirst a integer T(T<=10000),then T lines follow, every line has three positive integer L,R,K.( 
0<L<=R<2 63-1 and 1<=K<=10).OutputFor each query, print "Case #t: ans" in a line, in which t is the number of the test case starting from 1 and ans is the answer.Sample Input

1
123 321 2

Sample Output

Case #1: 139 

题意:就是说给你一个区间l-r,问你满足数位上最长上升序列长度为k。
题解:
  数位dp,因为对于每个数,最终都会有一个最长上升序列的状态,
  所以根据这个来记录状态f[i][j][k]表示到了i位,上升的状态为j,长度为k,j中用二进制表示,
  因为前面的一定小。
 #include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
#include<cstdio>
#define ll long long
using namespace std; int Case=;
int a[],k;
ll f[][<<][],l,r; inline int get_new(int x,int s)
{
for (int i=x;i<;i++)
if (s&(<<i)) return (s^(<<i))|(<<x);
return s|(<<x);
}
inline int get(int s)
{
int res=;
while(s)
{
if (s&) res++;
s>>=;
}
return res;
}
ll dfs(int wei,int s,bool e,bool flag)
{
if (wei==) return get(s)==k;
if (!e&&f[wei][s][k]!=-) return f[wei][s][k];
ll res=;
int ed;
if (e) ed=a[wei];
else ed=;
for (int i=;i<=ed;i++)
res+=dfs(wei-,(flag&&i==)?:get_new(i,s),e&&i==ed,flag&&(i==));
if (!e) f[wei][s][k]=res;
return res;
}
ll solve(ll x)
{
int len=;
while(x)
{
a[++len]=x%;
x/=;
}
return dfs(len,,,);
}
int main()
{
memset(f,-,sizeof(f));
int cas;scanf("%d",&cas);
while(cas--)
{
scanf("%lld%lld%d",&l,&r,&k);
printf("Case #%d: %lld\n",++Case,solve(r)-solve(l-));
}
}
 

hdu4352 XHXJ's LIS(数位DP + LIS + 状态压缩)的更多相关文章

  1. HDU 4352 XHXJ&#39;s LIS(数位dp&amp;状态压缩)

    题目链接:[kuangbin带你飞]专题十五 数位DP B - XHXJ's LIS 题意 给定区间.求出有多少个数满足最长上升子序列(将数看作字符串)的长度为k. 思路 一个数的上升子序列最大长度为 ...

  2. HDU 4352 XHXJ's LIS (数位DP+LIS+状态压缩)

    题意:给定一个区间,让你求在这个区间里的满足LIS为 k 的数的数量. 析:数位DP,dp[i][j][k] 由于 k 最多是10,所以考虑是用状态压缩,表示 前 i 位,长度为 j,状态为 k的数量 ...

  3. HDU 4352 XHXJ's LIS 数位dp lis

    目录 题目链接 题解 代码 题目链接 HDU 4352 XHXJ's LIS 题解 对于lis求的过程 对一个数列,都可以用nlogn的方法来的到它的一个可行lis 对这个logn的方法求解lis时用 ...

  4. Codeforces Round #235 (Div. 2) D. Roman and Numbers (数位dp、状态压缩)

    D. Roman and Numbers time limit per test 4 seconds memory limit per test 512 megabytes input standar ...

  5. HDU 4352 - XHXJ's LIS - [数位DP][LIS问题]

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4352 Time Limit: 2000/1000 MS (Java/Others) Memory Li ...

  6. [BZOJ 4455] [ZJOI 2016] 小星星 (树形dp+容斥原理+状态压缩)

    [BZOJ 4455] [ZJOI 2016] 小星星 (树形dp+容斥原理+状态压缩) 题面 给出一棵树和一个图,点数均为n,问有多少种方法把树的节点标号,使得对于树上的任意两个节点u,v,若树上u ...

  7. hdu 4352 XHXJ's LIS 数位dp+状态压缩

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4352 XHXJ's LIS Time Limit: 2000/1000 MS (Java/Others ...

  8. hdu4352 XHXJ's LIS[数位DP套状压DP+LIS$O(nlogn)$]

    统计$[L,R]$内LIS长度为$k$的数的个数,$Q \le 10000,L,R < 2^{63}-1,k \le 10$. 首先肯定是数位DP.然后考虑怎么做这个dp.如果把$k$记录到状态 ...

  9. hdu_4352_XHXJ's LIS(数位DP+状态压缩)

    题目连接:hdu_4352_XHXJ's LIS 题意:这题花大篇篇幅来介绍电子科大的一个传奇学姐,最后几句话才是题意,这题意思就是给你一个LL范围内的区间,问你在这个区间内最长递增子序列长度恰为K的 ...

随机推荐

  1. 解决IDEA Tomcat控制台乱码问题

    1.在Tomcat Server的配置中添加一句命令: 神秘代码: -Dfile.encoding=UTF-8 重启Tomcat,ok. 如果还不行,则需要: 1.在Settings中修改文件编码 2 ...

  2. 【经验总结】OSG 安装配置

    对于普通用户推荐直接下载安装包配置.如有特殊需求或想了解编译过程可参考网上文章自己编译后配置.(通常建议使用第一种方法即可) 本人安装经验: 失败:自己系统64位,VS2010 32位,开始自己动手编 ...

  3. CCF|最大波动|Java|100

    import java.util.*; public class Main { public static void main(String[] args) { Scanner in = new Sc ...

  4. SQLite – ORDER 子句

    SQLite - ORDER BY子句 The SQLite ORDER BY子句用于数据按升序或降序排序,基于一个或多个列. 语法: ORDER BY子句的基本语法如下: SELECT column ...

  5. 用Vue的方式实现复选框

    var borrVm = new Vue({ el: "#WingApp", data: { returnBookList:[], checked:"", ch ...

  6. 判断请求是否为ajax

    判断请求是否为ajax 转载:http://www.cnblogs.com/tony-jingzhou/archive/2012/07/30/2615612.html x-requested-with ...

  7. 查看cuda版本和cudann

    nvcc -V 没有找到直接查询cudann版本的命令,但发现cudann装在 /usr/local/cuda/lib64/目录下,libcudnn.so就是相应版本

  8. MFC限制窗口大小

    MFC限制窗口大小 使用:WM_GETMINMAXINFO message void OnGetMinMaxInfo(MINMAXINFO* lpMMI) { lpMMI->ptMinTrack ...

  9. OpenCV2:第九章 图像比较

    一.简介 图像相似度主要是对两幅图像内容的相似程度进行打分,根据分数的高低来判断图像内容的相似程度. 常见的图像比较有两种方法:峰值信噪比PSNR和结构相似性SSIM 二.峰值信噪比PSNR(Peak ...

  10. 漫谈Word2vec之skip-gram模型

    https://zhuanlan.zhihu.com/p/30302498 陈运文 ​ 复旦大学 计算机应用技术博士 40 人赞同了该文章 [作者] 刘书龙,现任达观数据技术部工程师,兴趣方向主要为自 ...