#define xhxj (Xin Hang senior sister(学姐)) 
If you do not know xhxj, then carefully reading the entire description is very important. 
As the strongest fighting force in UESTC, xhxj grew up in Jintang, a border town of Chengdu. 
Like many god cattles, xhxj has a legendary life: 
2010.04, had not yet begun to learn the algorithm, xhxj won the second prize in the university contest. And in this fall, xhxj got one gold medal and one silver medal of regional contest. In the next year's summer, xhxj was invited to Beijing to attend the astar onsite. A few months later, xhxj got two gold medals and was also qualified for world's final. However, xhxj was defeated by zhymaoiing in the competition that determined who would go to the world's final(there is only one team for every university to send to the world's final) .Now, xhxj is much more stronger than ever,and she will go to the dreaming country to compete in TCO final. 
As you see, xhxj always keeps a short hair(reasons unknown), so she looks like a boy( I will not tell you she is actually a lovely girl), wearing yellow T-shirt. When she is not talking, her round face feels very lovely, attracting others to touch her face gently。Unlike God Luo's, another UESTC god cattle who has cool and noble charm, xhxj is quite approachable, lively, clever. On the other hand,xhxj is very sensitive to the beautiful properties, "this problem has a very good properties",she always said that after ACing a very hard problem. She often helps in finding solutions, even though she is not good at the problems of that type. 
Xhxj loves many games such as,Dota, ocg, mahjong, Starcraft 2, Diablo 3.etc,if you can beat her in any game above, you will get her admire and become a god cattle. She is very concerned with her younger schoolfellows, if she saw someone on a DOTA platform, she would say: "Why do not you go to improve your programming skill". When she receives sincere compliments from others, she would say modestly: "Please don’t flatter at me.(Please don't black)."As she will graduate after no more than one year, xhxj also wants to fall in love. However, the man in her dreams has not yet appeared, so she now prefers girls. 
Another hobby of xhxj is yy(speculation) some magical problems to discover the special properties. For example, when she see a number, she would think whether the digits of a number are strictly increasing. If you consider the number as a string and can get a longest strictly increasing subsequence the length of which is equal to k, the power of this number is k.. It is very simple to determine a single number’s power, but is it also easy to solve this problem with the numbers within an interval? xhxj has a little tired,she want a god cattle to help her solve this problem,the problem is: Determine how many numbers have the power value k in [L,R] in O(1)time. 
For the first one to solve this problem,xhxj will upgrade 20 favorability rate。

InputFirst a integer T(T<=10000),then T lines follow, every line has three positive integer L,R,K.( 
0<L<=R<2 63-1 and 1<=K<=10).OutputFor each query, print "Case #t: ans" in a line, in which t is the number of the test case starting from 1 and ans is the answer.Sample Input

1
123 321 2

Sample Output

Case #1: 139 

题意:就是说给你一个区间l-r,问你满足数位上最长上升序列长度为k。
题解:
  数位dp,因为对于每个数,最终都会有一个最长上升序列的状态,
  所以根据这个来记录状态f[i][j][k]表示到了i位,上升的状态为j,长度为k,j中用二进制表示,
  因为前面的一定小。
 #include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
#include<cstdio>
#define ll long long
using namespace std; int Case=;
int a[],k;
ll f[][<<][],l,r; inline int get_new(int x,int s)
{
for (int i=x;i<;i++)
if (s&(<<i)) return (s^(<<i))|(<<x);
return s|(<<x);
}
inline int get(int s)
{
int res=;
while(s)
{
if (s&) res++;
s>>=;
}
return res;
}
ll dfs(int wei,int s,bool e,bool flag)
{
if (wei==) return get(s)==k;
if (!e&&f[wei][s][k]!=-) return f[wei][s][k];
ll res=;
int ed;
if (e) ed=a[wei];
else ed=;
for (int i=;i<=ed;i++)
res+=dfs(wei-,(flag&&i==)?:get_new(i,s),e&&i==ed,flag&&(i==));
if (!e) f[wei][s][k]=res;
return res;
}
ll solve(ll x)
{
int len=;
while(x)
{
a[++len]=x%;
x/=;
}
return dfs(len,,,);
}
int main()
{
memset(f,-,sizeof(f));
int cas;scanf("%d",&cas);
while(cas--)
{
scanf("%lld%lld%d",&l,&r,&k);
printf("Case #%d: %lld\n",++Case,solve(r)-solve(l-));
}
}
 

hdu4352 XHXJ's LIS(数位DP + LIS + 状态压缩)的更多相关文章

  1. HDU 4352 XHXJ&#39;s LIS(数位dp&amp;状态压缩)

    题目链接:[kuangbin带你飞]专题十五 数位DP B - XHXJ's LIS 题意 给定区间.求出有多少个数满足最长上升子序列(将数看作字符串)的长度为k. 思路 一个数的上升子序列最大长度为 ...

  2. HDU 4352 XHXJ's LIS (数位DP+LIS+状态压缩)

    题意:给定一个区间,让你求在这个区间里的满足LIS为 k 的数的数量. 析:数位DP,dp[i][j][k] 由于 k 最多是10,所以考虑是用状态压缩,表示 前 i 位,长度为 j,状态为 k的数量 ...

  3. HDU 4352 XHXJ's LIS 数位dp lis

    目录 题目链接 题解 代码 题目链接 HDU 4352 XHXJ's LIS 题解 对于lis求的过程 对一个数列,都可以用nlogn的方法来的到它的一个可行lis 对这个logn的方法求解lis时用 ...

  4. Codeforces Round #235 (Div. 2) D. Roman and Numbers (数位dp、状态压缩)

    D. Roman and Numbers time limit per test 4 seconds memory limit per test 512 megabytes input standar ...

  5. HDU 4352 - XHXJ's LIS - [数位DP][LIS问题]

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4352 Time Limit: 2000/1000 MS (Java/Others) Memory Li ...

  6. [BZOJ 4455] [ZJOI 2016] 小星星 (树形dp+容斥原理+状态压缩)

    [BZOJ 4455] [ZJOI 2016] 小星星 (树形dp+容斥原理+状态压缩) 题面 给出一棵树和一个图,点数均为n,问有多少种方法把树的节点标号,使得对于树上的任意两个节点u,v,若树上u ...

  7. hdu 4352 XHXJ's LIS 数位dp+状态压缩

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4352 XHXJ's LIS Time Limit: 2000/1000 MS (Java/Others ...

  8. hdu4352 XHXJ's LIS[数位DP套状压DP+LIS$O(nlogn)$]

    统计$[L,R]$内LIS长度为$k$的数的个数,$Q \le 10000,L,R < 2^{63}-1,k \le 10$. 首先肯定是数位DP.然后考虑怎么做这个dp.如果把$k$记录到状态 ...

  9. hdu_4352_XHXJ's LIS(数位DP+状态压缩)

    题目连接:hdu_4352_XHXJ's LIS 题意:这题花大篇篇幅来介绍电子科大的一个传奇学姐,最后几句话才是题意,这题意思就是给你一个LL范围内的区间,问你在这个区间内最长递增子序列长度恰为K的 ...

随机推荐

  1. Dapper系列之三:Dapper的事务修改与删除

    Dapepr的Update和Delete Dapper入门Dapper查询 上两篇文章我们介绍Dapper中添加和查询.本篇文章我们继续讲解修改和删除....如果本篇文章看不懂,请看阅读上两篇Dapp ...

  2. 第一个 swift 项目

    今天 学习了 一丢丢 swift,特此记录一下 ! 原来创建的时候 ,只要把 语言 由以前的Object-C改为Swift,变创建好了自己的swift工程 第一个简单的swift demo 上代码 i ...

  3. maven编译报错 -source 1.5 中不支持 lambda(或diamond) 表达式,编码 UTF-8 的不可映射字符

    在用maven编译项目是由于项目中用了jdk 1.8, 编译是报错  -source 1.5 中不支持 lambda 表达式. 错误原因: Maven Compiler 插件默认会加 -source ...

  4. scala 通过jdbc访问mysql

    scala是jvm语言,运行在jvm之上 我们知道jdbc是java访问数据库的技术,那么scala能不能通过jdbc操作数据库呢,答案是可以的 部分代码如下: /** * 获取连接 */ priva ...

  5. 洛谷 P2604 [ZJOI2010]网络扩容

    题目描述 给定一张有向图,每条边都有一个容量C和一个扩容费用W.这里扩容费用是指将容量扩大1所需的费用.求: 1. 在不扩容的情况下,1到N的最大流: 2. 将1到N的最大流增加K所需的最小扩容费用. ...

  6. 洛谷P1724 东风谷早苗

    题目描述 在幻想乡,东风谷早苗是以高达控闻名的高中生宅巫女.某一天,早苗终于入手了最新款的钢达姆模型.作为最新的钢达姆,当然有了与以往不同的功能了,那就是它能够自动行走,厉害吧(好吧,我自重).早苗的 ...

  7. ElasticSearch可视化工具 Kibana

    Kibana要和ElasticSearch 版本一致,默认的端口号是:5601

  8. 细说PHP-5.4 变量的类型

    变量类型是指保存在该变量中的数据类型.计算机操作的对象是数据在计算编程语言世界里,每一个数据也都有它的类型,具有相同类型的数据才能彼此操作.例如书柜是装书用的.大衣柜是放衣服用的.保险柜是存放贵重物品 ...

  9. nvm、npm、nodejs的关系(转载)

    nvm.npm.nodejs的关系 为什么要了解nvm.npm.nodejs的关系: reactNative的项目构建都是有这几个工具进行构建管理. 掌握他们的关系,就能了解reactNative项目 ...

  10. QT5:第二章 布局排版控件

    一.简介 在QT组件面板中有Layouts和Spacers两个组件面板 注意:布局排版控件不显示 1.Layouts(布局) Vertical Layout:垂直方向布局,组件自动在垂直方向上分布 H ...