题意:给定一张有向图,每条边都有一个容量C和一个扩容费用W。这里扩容费用是指将容量扩大1所需的费用。

求: 1、 在不扩容的情况下,1到N的最大流;

2、 将1到N的最大流增加K所需的最小扩容费用。

30%的数据中,N<=100
100%的数据中,N<=1000,M<=5000,K<=10

思路:RYZ作业

第一问最大流即可

第二问网上很多题解都是在第一问的残余网络上构图,但是根本不需要

考虑边(x,y,z,w)

有容量为z,费用为0的免费流量,有容量为INF,费用为w的扩容付费流量,连这两种边

又因为求的是最大流为ans1+k时的最小费用,所以需要建立一个新的源点,从n连一条容量为ans1+k,费用为0的边来限制流量

费用流经典模型之一(模板?)

 var head,vet,next,len1,len2,fan,x,y,z,w:array[..]of longint;
pre:array[..,..]of longint;
dis,gap,q:array[..]of longint;
inq:array[..]of boolean;
n,m,ans1,ans2,tot,i,src,source,s,k:longint; procedure add(a,b,c,d:longint);
begin
inc(tot);
next[tot]:=head[a];
vet[tot]:=b;
len1[tot]:=c;
len2[tot]:=d;
head[a]:=tot; inc(tot);
next[tot]:=head[b];
vet[tot]:=a;
len1[tot]:=;
len2[tot]:=-d;
head[b]:=tot;
end; function min(x,y:longint):longint;
begin
if x<y then exit(x);
exit(y);
end; function dfs(u,aug:longint):longint;
var e,v,val,t,flow:longint;
begin
if u=src then exit(aug);
e:=head[u]; flow:=; val:=s-;
while e<> do
begin
v:=vet[e];
if len1[e]> then
begin
if dis[u]=dis[v]+ then
begin
t:=dfs(v,min(len1[e],aug-flow));
len1[e]:=len1[e]-t;
len1[fan[e]]:=len1[fan[e]]+t;
flow:=flow+t;
if dis[source]>=s then exit(flow);
if aug=flow then break;
end;
val:=min(val,dis[v]);
end;
e:=next[e];
end;
if flow= then
begin
dec(gap[dis[u]]);
if gap[dis[u]]= then dis[source]:=s;
dis[u]:=val+;
inc(gap[dis[u]]);
end;
exit(flow);
end; function maxflow:longint;
var ans:longint;
begin
fillchar(gap,sizeof(gap),);
fillchar(dis,sizeof(dis),);
gap[]:=s; ans:=;
while dis[source]<s do ans:=ans+dfs(source,maxlongint);
exit(ans);
end; function spfa:boolean;
var t,u,e,v,i,w:longint;
begin
for i:= to s do
begin
dis[i]:=maxlongint>>;
inq[i]:=false;
end;
t:=; w:=; q[]:=source; inq[source]:=true; dis[source]:=;
while t<w do
begin
inc(t); u:=q[t mod ];
inq[u]:=false;
e:=head[u];
while e<> do
begin
v:=vet[e];
if (len1[e]>)and(dis[u]+len2[e]<dis[v]) then
begin
pre[v,]:=u;
pre[v,]:=e;
dis[v]:=dis[u]+len2[e];
if not inq[v] then
begin
inc(w); q[w mod ]:=v; inq[v]:=true;
end;
end;
e:=next[e];
end;
end;
if dis[src]=maxlongint>> then exit(false);
exit(true);
end; procedure mcf;
var k,e,t:longint;
begin
k:=src; t:=maxlongint;
while k<>source do
begin
t:=min(t,len1[pre[k,]]);
k:=pre[k,];
end;
k:=src;
while k<>source do
begin
e:=pre[k,];
len1[e]:=len1[e]-t;
len1[fan[e]]:=len1[fan[e]]+t;
ans2:=ans2+t*len2[e];
k:=pre[k,];
end;
end; begin
assign(input,'bzoj1834.in'); reset(input);
assign(output,'bzoj1834.out'); rewrite(output);
readln(n,m,k);
for i:= to do
if i and = then fan[i]:=i+
else fan[i]:=i-;
for i:= to m do
begin
readln(x[i],y[i],z[i],w[i]);
add(x[i],y[i],z[i],w[i]);
end; source:=; src:=n; s:=n;
ans1:=maxflow;
fillchar(head,sizeof(head),);
tot:=;
for i:= to m do
begin
add(x[i],y[i],z[i],);
add(x[i],y[i],maxlongint,w[i]);
end;
write(ans1,' ');
inc(src); inc(s);
add(n,src,ans1+k,);
while spfa do mcf;
write(ans2);
close(input);
close(output);
end.

【BZOJ1834】network 网络扩容(最大流,费用流)的更多相关文章

  1. BZOJ 1834: [ZJOI2010]network 网络扩容(网络流+费用流)

    一看就知道是模板题= = ,不说什么了= = PS:回去搞期末了,暑假再来刷题了 CODE: #include<cstdio> #include<iostream> #incl ...

  2. BZOJ1834 [ZJOI2010]network 网络扩容(最小费用最大流)

    挺直白的构图..最小费用最大流的定义. #include<cstdio> #include<cstring> #include<queue> #include< ...

  3. BZOJ 1834: [ZJOI2010]network 网络扩容 最小费用流_最大流_残量网络

    对于第一问,跑一遍最大流即可. 对于第二问,在残量网络上的两点间建立边 <u,v>,容量为无限大,费用为扩充费用. 跑一遍最小费用流即可. Code: #include <vecto ...

  4. BZOJ 1834 ZJOI2010 network 网络扩展 Dinic+EK费用流

    标题效果:给定一个n积分m无向图边,每一方有一个扩展的成本c.代表扩张1费用的交通,寻求最大流量和扩大的最大流量k最小成本 第一问直接运行的最大流量 第二个问题将是连接到一个流的末端每个边缘的起点是正 ...

  5. 洛谷P2604 网络扩容 拆点+费用流

    原题链接 这题貌似比较水吧,最简单的拆点,直接上代码了. #include <bits/stdc++.h> using namespace std; #define N 1000 #def ...

  6. bzoj-1834 network 网络扩容 【网络流】

    这题就是复习下网络流. #include <bits/stdc++.h> #define rep(i, a, b) for (int i = a; i <= b; i++) #def ...

  7. BZOJ1834 [ZJOI2010]network 网络扩容 【最大流,费用流】

    1834: [ZJOI2010]network 网络扩容 Time Limit: 3 Sec  Memory Limit: 64 MB Submit: 3394  Solved: 1774 [Subm ...

  8. [BZOJ1834][ZJOI2010]network 网络扩容 最大流+费用流

    1834: [ZJOI2010]network 网络扩容 Time Limit: 3 Sec  Memory Limit: 64 MB Submit: 3330  Solved: 1739 [Subm ...

  9. 【最大流】【费用流】bzoj1834 [ZJOI2010]network 网络扩容

    引用题解: 最大流+费用流. 第一问最大流即可. 第二问为“最小费用最大流”. 由题意,这一问的可转化为在上一问的“残量网络”上,扩大一些边的容量,使能从新的图中的最大流为k. 那么易得:对于还有剩余 ...

  10. 【BZOJ1834】[ZJOI2010]network 网络扩容 最大流+最小费用流

    [BZOJ1834][ZJOI2010]network 网络扩容 Description 给定一张有向图,每条边都有一个容量C和一个扩容费用W.这里扩容费用是指将容量扩大1所需的费用.求: 1. 在不 ...

随机推荐

  1. The lion king 经典句型摘录

    What am I going to do with him? Everything the light touches is our kingdom. But I thought a king ca ...

  2. checking for gcc... no

    ./configure 后显示checking for gcc... nochecking for cc... nochecking for cl.exe... noconfigure.sh:erro ...

  3. ubuntu下安装mongo扩展

    安装openssl apt-get install openssl libssl-dev libssl0.9.8 libgtk2.0-dev 安装php-pear apt-get install ph ...

  4. vue同胞组件通讯解决方案(以下为一种另外可用vuex解决)

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  5. 4.03 使用NULL代替默认值

    问题:在一个定义了默认值的列插入数据,并且需要不管该列的默认值是什么,都将该列值设为NULL.考虑一下下面的表: create table D (id interger default 0, foo ...

  6. (转)编码剖析@Resource注解的实现原理

    http://blog.csdn.net/yerenyuan_pku/article/details/52860046 上文我们已经学会使用@Resource注解注入属性.学是学会了,但也仅限于会使用 ...

  7. DROP AGGREGATE - 删除一个用户定义的聚集函数

    SYNOPSIS DROP AGGREGATE name ( type ) [ CASCADE | RESTRICT ] DESCRIPTION 描述 DROP AGGREGATE 将删除一个现存聚集 ...

  8. Omnidirectional DSO: Direct Sparse Odometry with Fisheye Cameras 论文摘要

    1. Abstract 通过一种Unified Omnidirectional Model作为投影方程. 这种方式可以使用图像的所有内容包括有强畸变的区域,而现存的视觉里程计方案只能修正或者切掉来使用 ...

  9. 光猫&路由器网络配置

    前期准备:电脑(工业电脑).网线.光猫.路由器 1.检查连接光猫后能否正常上网:把网线两头的水晶头,一头插在光猫上的千兆口,一头插在电脑(工业电脑)的网口上,看电脑能否正常上网: 可以正常上网:说明光 ...

  10. shell $() vs ${}

    reference $( )与` `(反引号)都是用来做命令替换(command substitution)用的 run command 3, 2, 1 command1 $(command2 $(c ...