Codeforces225E - Unsolvable
Description
求所有对于方程$$z=\left \lfloor \frac{x}{2} \right \rfloor+y+xy$$不存在正整数解\((x,y)\)的\(z\)中,第\(n\)小的\(z\)。答案对\(10^9+7\)取模。
Solution
\(\left \lfloor \dfrac{x}{2} \right \rfloor\)看起来很烦,来把它去掉。
\(x\)为奇数时,原方程可化为\(2z+2= (2y+1)(x+1)\),其中\(2y+1\)是奇数,\(x+1\)是偶数。也就是说,\(z\)有解\(\Leftrightarrow 2z+2\)可以表示为奇数(非\(1\))与偶数的积。那么\(2z+2\)就不能含有任何的奇数质因子,只能是\(2\)的若干次幂,这是\(z\)无解的必要条件。
\(x\)为偶数时,原方程可化为\(2z+1= (2y+1)(x+1)\),其中\(2y+1\)是奇数,\(x+1\)是奇数。也就是说,\(z\)有解\(\Leftrightarrow 2z+1\)可以表示为奇数(非\(1\))与奇数(非\(1\))的积。那么\(2z+1\)作为一个奇数却不能表示成两个奇数的积,那么它只能是一个奇质数。这是\(z\)无解的另一个必要条件。
总结一下,\(z\)无解\(\Leftrightarrow 2z+2=2^k, 2z+1\)为质数\(\Leftrightarrow 2z+1=2^k-1\)且为质数
形如\(2^k-1\)的素数称为梅森素数(Mersenne prime),目前仅发现50个梅森素数,最大的是\(2^{77232917}-1\),有\(23249425\)位数。百度一下即可(摔!!!!!题解就是叫你上网查!!!!!)
Prime numbers like \(2^{a-1}\) are Mersenne primes. Only about 46 such numbers are found now. Powers of 2 for the firts 40 numbers you can find for example here.
Code
//Unsolvable
#include <cstdio>
typedef long long lint;
lint const H=1e9+7;
int p[50]={0,2,3,5,7,13,17,19,31,61,89,107,127,521,607,1279,2203,2281,3217,4253,4423,9689,9941,11213,19937,21701,23209,44497,86243,110503,132049,216091,756839,859433,1257787,1398269,2976221,3021377,6972593,13466917,20996011,24036583,25964951,30402457,32582657,37156667};
int m[50]={0,1,3,15,63,4095,65535,262143,73741816,536396503,140130950,487761805,319908070,106681874,373391776,317758023,191994803,416292236,110940209,599412198,383601260,910358878,532737550,348927936,923450985,470083777,642578561,428308066,485739298,419990027,287292016,202484167,389339971,848994100,273206869,853092282,411696552,876153853,90046024,828945523,697988359,761934284,490117835,345345628,545328622,969088513};
int main()
{
int n; scanf("%d",&n);
printf("%d\n",m[n]);
return 0;
}
P.S.
自己上网查是什么鬼啊!!!!!
Codeforces225E - Unsolvable的更多相关文章
- The Unsolvable Problem
The Unsolvable Problem 题目链接:http://acm.hust.edu.cn/vjudge/problem/visitOriginUrl.action?id=45783 题意: ...
- hdu 4627 The Unsolvable Problem(暴力的搜索)
Problem Description There are many unsolvable problem in the world.It could be about one or about ze ...
- 2013多校联合3 G The Unsolvable Problem(hdu 4627)
2013-07-30 20:35 388人阅读 评论(0) 收藏 举报 http://acm.hdu.edu.cn/showproblem.php?pid=4627 The Unsolvable Pr ...
- hdu 4627 The Unsolvable Problem【hdu2013多校3签到】
链接: http://acm.hdu.edu.cn/showproblem.php?pid=4627 The Unsolvable Problem Time Limit: 2000/1000 MS ( ...
- hdu 4627 The Unsolvable Problem
http://acm.hdu.edu.cn/showproblem.php?pid=4627 分类讨论一下就可以 代码: #include<iostream> #include<cs ...
- HDU 4627 The Unsolvable Problem 2013 Multi-University Training Contest 3
给你一个数 n ( 2 <= n <= 109 ),现在需要你找到一对数a, b (a + b = n),并且使得LCM(a, b)尽可能的大,然后输出最大的 LCM(a, b). (为什 ...
- HDU-4627 The Unsolvable Problem 简单数学
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4627 对n除个2,然后考虑下奇偶... //STATUS:C++_AC_15MS_228KB #inc ...
- HDU 4627 The Unsolvable Problem(简单题)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4627 题目大意:给定一个整数n(2 <= n <= 109),满足a+b=n并且[a,b] ...
- HDU 4627 There are many unsolvable problem in the world.It could be about one or about zero.But this time it is about bigger number.
题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=82974#problem/E 解题思路:数论,从一个数的中间开始往两边找,找到两 ...
随机推荐
- PowerShell~语法与运算符
基本语法 变量:$开头 $a = "Hello" 条件语句:if else ) { Write-Host "偶数" } else{ Write-Host &qu ...
- java实现课堂随机点名小程序
通过jdbc连接数据库实现读取学生花名册进行随机点名! ~jdbc连接mysql数据库 || 注释部分代码可通过读取.txt文档实现显示学生信息 ~通过点击开始按钮实现界面中间标签不断更新学生信息 ...
- configure: error: MySQL library not found
在CentOS系统中,安装zabbix进行configure时会遇到以下问题 ./configure --enable-server --enable-agent --with-mysql --wit ...
- java中同步(synchronized)详解
一.开山篇: 1.synchronized的使用 一个程序中,如果该类中的代码可能运行于多线程环境下,那么就要考虑同步的问题.在Java中内置了语言级的同步原语--synchronized,这也大大简 ...
- IOS颜色块设置
+ (UIImage *)imageWithColor:(UIColor *)color { CGRect rect = CGRectMake(0.0f, 0.0f, 1.0f, 1.0f); UIG ...
- app支付宝授权登录获取用户信息
由后台进行地址的拼接(前台进行授权) // 生成授权的参数 String sign = ""; Long userId1 = SecurityUser.getUserId(); S ...
- Codeforces Round #539 (Div. 2) C. Sasha and a Bit of Relax(前缀异或和)
转载自:https://blog.csdn.net/Charles_Zaqdt/article/details/87522917 题目链接:https://codeforces.com/contest ...
- Linux-RedHat7.2 使用CentOS源
-- 查看yum rpm -qa |grep yum --卸载yum rpm -qa | grep yum | xargs rpm -e --nodeps --拷贝centos系统yum工具安装程序到 ...
- QT5:第二章 布局排版控件
一.简介 在QT组件面板中有Layouts和Spacers两个组件面板 注意:布局排版控件不显示 1.Layouts(布局) Vertical Layout:垂直方向布局,组件自动在垂直方向上分布 H ...
- 安装docker和docker-compose
环境:centos7,参考官方文档:https://docs.docker.com/insta... 第一步:删除旧版本和相关依赖,运行命令: yum remove docker \ docker ...