Portal

Description

求所有对于方程$$z=\left \lfloor \frac{x}{2} \right \rfloor+y+xy$$不存在正整数解\((x,y)\)的\(z\)中,第\(n\)小的\(z\)。答案对\(10^9+7\)取模。

Solution

\(\left \lfloor \dfrac{x}{2} \right \rfloor\)看起来很烦,来把它去掉。

\(x\)为奇数时,原方程可化为\(2z+2= (2y+1)(x+1)\),其中\(2y+1\)是奇数,\(x+1\)是偶数。也就是说,\(z\)有解\(\Leftrightarrow 2z+2\)可以表示为奇数(非\(1\))与偶数的积。那么\(2z+2\)就不能含有任何的奇数质因子,只能是\(2\)的若干次幂,这是\(z\)无解的必要条件。

\(x\)为偶数时,原方程可化为\(2z+1= (2y+1)(x+1)\),其中\(2y+1\)是奇数,\(x+1\)是奇数。也就是说,\(z\)有解\(\Leftrightarrow 2z+1\)可以表示为奇数(非\(1\))与奇数(非\(1\))的积。那么\(2z+1\)作为一个奇数却不能表示成两个奇数的积,那么它只能是一个奇质数。这是\(z\)无解的另一个必要条件。

总结一下,\(z\)无解\(\Leftrightarrow 2z+2=2^k, 2z+1\)为质数\(\Leftrightarrow 2z+1=2^k-1\)且为质数

形如\(2^k-1\)的素数称为梅森素数(Mersenne prime),目前仅发现50个梅森素数,最大的是\(2^{77232917}-1\),有\(23249425\)位数。百度一下即可(摔!!!!!题解就是叫你上网查!!!!!)

Prime numbers like \(2^{a-1}\) are Mersenne primes. Only about 46 such numbers are found now. Powers of 2 for the firts 40 numbers you can find for example here.

Code

//Unsolvable
#include <cstdio>
typedef long long lint;
lint const H=1e9+7;
int p[50]={0,2,3,5,7,13,17,19,31,61,89,107,127,521,607,1279,2203,2281,3217,4253,4423,9689,9941,11213,19937,21701,23209,44497,86243,110503,132049,216091,756839,859433,1257787,1398269,2976221,3021377,6972593,13466917,20996011,24036583,25964951,30402457,32582657,37156667};
int m[50]={0,1,3,15,63,4095,65535,262143,73741816,536396503,140130950,487761805,319908070,106681874,373391776,317758023,191994803,416292236,110940209,599412198,383601260,910358878,532737550,348927936,923450985,470083777,642578561,428308066,485739298,419990027,287292016,202484167,389339971,848994100,273206869,853092282,411696552,876153853,90046024,828945523,697988359,761934284,490117835,345345628,545328622,969088513};
int main()
{
int n; scanf("%d",&n);
printf("%d\n",m[n]);
return 0;
}

P.S.

自己上网查是什么鬼啊!!!!!

Codeforces225E - Unsolvable的更多相关文章

  1. The Unsolvable Problem

    The Unsolvable Problem 题目链接:http://acm.hust.edu.cn/vjudge/problem/visitOriginUrl.action?id=45783 题意: ...

  2. hdu 4627 The Unsolvable Problem(暴力的搜索)

    Problem Description There are many unsolvable problem in the world.It could be about one or about ze ...

  3. 2013多校联合3 G The Unsolvable Problem(hdu 4627)

    2013-07-30 20:35 388人阅读 评论(0) 收藏 举报 http://acm.hdu.edu.cn/showproblem.php?pid=4627 The Unsolvable Pr ...

  4. hdu 4627 The Unsolvable Problem【hdu2013多校3签到】

    链接: http://acm.hdu.edu.cn/showproblem.php?pid=4627 The Unsolvable Problem Time Limit: 2000/1000 MS ( ...

  5. hdu 4627 The Unsolvable Problem

    http://acm.hdu.edu.cn/showproblem.php?pid=4627 分类讨论一下就可以 代码: #include<iostream> #include<cs ...

  6. HDU 4627 The Unsolvable Problem 2013 Multi-University Training Contest 3

    给你一个数 n ( 2 <= n <= 109 ),现在需要你找到一对数a, b (a + b = n),并且使得LCM(a, b)尽可能的大,然后输出最大的 LCM(a, b). (为什 ...

  7. HDU-4627 The Unsolvable Problem 简单数学

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4627 对n除个2,然后考虑下奇偶... //STATUS:C++_AC_15MS_228KB #inc ...

  8. HDU 4627 The Unsolvable Problem(简单题)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4627 题目大意:给定一个整数n(2 <= n <= 109),满足a+b=n并且[a,b] ...

  9. HDU 4627 There are many unsolvable problem in the world.It could be about one or about zero.But this time it is about bigger number.

    题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=82974#problem/E 解题思路:数论,从一个数的中间开始往两边找,找到两 ...

随机推荐

  1. PowerShell~语法与运算符

    基本语法 变量:$开头 $a = "Hello" 条件语句:if else ) { Write-Host "偶数" } else{ Write-Host &qu ...

  2. java实现课堂随机点名小程序

    通过jdbc连接数据库实现读取学生花名册进行随机点名! ~jdbc连接mysql数据库  ||  注释部分代码可通过读取.txt文档实现显示学生信息 ~通过点击开始按钮实现界面中间标签不断更新学生信息 ...

  3. configure: error: MySQL library not found

    在CentOS系统中,安装zabbix进行configure时会遇到以下问题 ./configure --enable-server --enable-agent --with-mysql --wit ...

  4. java中同步(synchronized)详解

    一.开山篇: 1.synchronized的使用 一个程序中,如果该类中的代码可能运行于多线程环境下,那么就要考虑同步的问题.在Java中内置了语言级的同步原语--synchronized,这也大大简 ...

  5. IOS颜色块设置

    + (UIImage *)imageWithColor:(UIColor *)color { CGRect rect = CGRectMake(0.0f, 0.0f, 1.0f, 1.0f); UIG ...

  6. app支付宝授权登录获取用户信息

    由后台进行地址的拼接(前台进行授权) // 生成授权的参数 String sign = ""; Long userId1 = SecurityUser.getUserId(); S ...

  7. Codeforces Round #539 (Div. 2) C. Sasha and a Bit of Relax(前缀异或和)

    转载自:https://blog.csdn.net/Charles_Zaqdt/article/details/87522917 题目链接:https://codeforces.com/contest ...

  8. Linux-RedHat7.2 使用CentOS源

    -- 查看yum rpm -qa |grep yum --卸载yum rpm -qa | grep yum | xargs rpm -e --nodeps --拷贝centos系统yum工具安装程序到 ...

  9. QT5:第二章 布局排版控件

    一.简介 在QT组件面板中有Layouts和Spacers两个组件面板 注意:布局排版控件不显示 1.Layouts(布局) Vertical Layout:垂直方向布局,组件自动在垂直方向上分布 H ...

  10. 安装docker和docker-compose

      环境:centos7,参考官方文档:https://docs.docker.com/insta... 第一步:删除旧版本和相关依赖,运行命令: yum remove docker \ docker ...