题解报告:hdu 1124 Factorial(求N!尾数有多少个0。)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1124
Problem Description
ACM technicians faced a very interesting problem recently. Given a set of BTSes to visit, they needed to find the shortest path to visit all of the given points and return back to the central company building. Programmers have spent several months studying this problem but with no results. They were unable to find the solution fast enough. After a long time, one of the programmers found this problem in a conference article. Unfortunately, he found that the problem is so called "Travelling Salesman Problem" and it is very hard to solve. If we have N BTSes to be visited, we can visit them in any order, giving us N! possibilities to examine. The function expressing that number is called factorial and can be computed as a product 1.2.3.4....N. The number is very high even for a relatively small N.
The programmers understood they had no chance to solve the problem. But because they have already received the research grant from the government, they needed to continue with their studies and produce at least some results. So they started to study behaviour of the factorial function.
For example, they defined the function Z. For any positive integer N, Z(N) is the number of zeros at the end of the decimal form of number N!. They noticed that this function never decreases. If we have two numbers N1<N2, then Z(N1) <= Z(N2). It is because we can never "lose" any trailing zero by multiplying by any positive number. We can only get new and new zeros. The function Z is very interesting, so we need a computer program that can determine its value efficiently.
Input
Output
Sample Input
Sample Output
#include<iostream>
using namespace std;
int main(){
int n,t,cnt;
while(cin>>t){
while(t--){
cin>>n;cnt=;
while(n>)cnt+=n/,n/=;
cout<<cnt<<endl;
}
}
return ;
}
题解报告:hdu 1124 Factorial(求N!尾数有多少个0。)的更多相关文章
- HDU 1124 Factorial (数论)
http://acm.hdu.edu.cn/showproblem.php? pid=1124 題目好長好長,好可怕,看完腎都萎了,以後肯定活不長.我可不能死在這種小事上,小灰灰我勵志死在少女的超短裙 ...
- hdu 1124 Factorial(数论)
题意: 求n!的尾0的个数 分析: 0一定是由因子2和5相乘产生的: 2的个数显然大于5的个数,故只需统计因子5的个数 n/5不能完全表示n!中5的个数(egg: 25),应该n/=5后,累加上n/2 ...
- HDU 1124 Factorial (阶乘后缀0)
题意: 给一个数n,返回其阶乘结果后缀有几个0. 思路: 首先将n个十进制数进行质因数分解,观察的得到只有2*5才会出现10.那么n!应含有min(2个数,5个数)个后缀0,明显5的个数必定比2少,所 ...
- 求N!尾数有多少个0。
方法一:假设N!=K*10M,K不能被10整除,那么N!尾数就有M个0.再对N!进行质因子分解:N!=2x*3y*5z...由于10=2*5,即每一对2和5相乘都可以得到1个0,所以M只与指数x.z有 ...
- 题解报告:hdu 1398 Square Coins(母函数或dp)
Problem Description People in Silverland use square coins. Not only they have square shapes but also ...
- 题解报告:hdu 2069 Coin Change(暴力orDP)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2069 Problem Description Suppose there are 5 types of ...
- 题解报告:hdu 1028 Ignatius and the Princess III(母函数or计数DP)
Problem Description "Well, it seems the first problem is too easy. I will let you know how fool ...
- 2015浙江财经大学ACM有奖周赛(一) 题解报告
2015浙江财经大学ACM有奖周赛(一) 题解报告 命题:丽丽&&黑鸡 这是命题者原话. 题目涉及的知识面比较广泛,有深度优先搜索.广度优先搜索.数学题.几何题.贪心算法.枚举.二进制 ...
- cojs 强连通图计数1-2 题解报告
OwO 题目含义都是一样的,只是数据范围扩大了 对于n<=7的问题,我们直接暴力搜索就可以了 对于n<=1000的问题,我们不难联想到<主旋律>这一道题 没错,只需要把方程改一 ...
随机推荐
- the attribute buffer size is too small 解决方法
在进行查询的时候引发The attribute buffer size is too small错误解决 http://bbs.esrichina-bj.cn/esri/viewthread.php? ...
- The 2014 ACM-ICPC Asia Mudanjiang Regional Contest 【部分题解】
2014牡丹江亚洲区域赛邀请赛 B题:图论题目 题解:这里 K题:想法题 分析:两种变化.加入和交换.首先:星号是n的话最少须要的数字是n+1,那么能够首先推断数字够不够,不够的话如今最前面添数字,假 ...
- angular $resource 的 get请求 和 post请求
1.语法: $resource(url,[paramDefaults],[actions],options); 详解: (1)url:一个参数化的url模板 (2)paramDefaults:url参 ...
- B+树在NTFS文件系统中的应用
B+树在NTFS文件系统中的应用 flyfish 2015-7-6 卷(volume) NTFS的结构首先从卷開始. 卷相应于磁盘上的一个逻辑分区,当你将一个磁盘或者磁盘的一部分格式化成NTFS,卷将 ...
- 【Mongodb教程 第四课 】MongoDB 创建集合
reateCollection() 方法 MongoDB db.createCollection(name, options) 是用来创建集合. 语法: 基本的 createCollection() ...
- Selenium系列之--测试框架断言【转】
selenium提供了三种模式的断言:assert .verify.waitfor 1)Assert(断言) 失败时,该测试将终止. 2)Verify(验证) 失败时,该测试将继续执行,并将错误记入日 ...
- 项目实战之玩转div+css制作自己定义形状
项目需求 watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/diss ...
- Android5.0(lollipop)新特性介绍(一)
今年6月的Google I/O大会上.Android L的初次见面我相信让会让非常多android粉丝有些小激动和小期待.当然作为开发人员的我来说,激动不言而喻,毕竟这是自08年以来改变最大的一个版本 ...
- UISlider无法拖动进度条的问题解决
UISlider无法拖动进度条的问题解决 最近业务中的视频播放使用到了UISlider,但是有一个奇怪的问题,就是在Modar出来的控制器中UISlider是可以正常使用的,但是在Push出来的控制器 ...
- redis-3.0.3安装測试
$ tar xzvf redis-3.0.3.tar.gz $ cd redis-3.0.3 $ make //编译 编译完毕进行 $ make test 命令測试 得到例如以下错误信息: c ...