题解报告:hdu 1124 Factorial(求N!尾数有多少个0。)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1124
Problem Description
ACM technicians faced a very interesting problem recently. Given a set of BTSes to visit, they needed to find the shortest path to visit all of the given points and return back to the central company building. Programmers have spent several months studying this problem but with no results. They were unable to find the solution fast enough. After a long time, one of the programmers found this problem in a conference article. Unfortunately, he found that the problem is so called "Travelling Salesman Problem" and it is very hard to solve. If we have N BTSes to be visited, we can visit them in any order, giving us N! possibilities to examine. The function expressing that number is called factorial and can be computed as a product 1.2.3.4....N. The number is very high even for a relatively small N.
The programmers understood they had no chance to solve the problem. But because they have already received the research grant from the government, they needed to continue with their studies and produce at least some results. So they started to study behaviour of the factorial function.
For example, they defined the function Z. For any positive integer N, Z(N) is the number of zeros at the end of the decimal form of number N!. They noticed that this function never decreases. If we have two numbers N1<N2, then Z(N1) <= Z(N2). It is because we can never "lose" any trailing zero by multiplying by any positive number. We can only get new and new zeros. The function Z is very interesting, so we need a computer program that can determine its value efficiently.
Input
Output
Sample Input
Sample Output
#include<iostream>
using namespace std;
int main(){
int n,t,cnt;
while(cin>>t){
while(t--){
cin>>n;cnt=;
while(n>)cnt+=n/,n/=;
cout<<cnt<<endl;
}
}
return ;
}
题解报告:hdu 1124 Factorial(求N!尾数有多少个0。)的更多相关文章
- HDU 1124 Factorial (数论)
http://acm.hdu.edu.cn/showproblem.php? pid=1124 題目好長好長,好可怕,看完腎都萎了,以後肯定活不長.我可不能死在這種小事上,小灰灰我勵志死在少女的超短裙 ...
- hdu 1124 Factorial(数论)
题意: 求n!的尾0的个数 分析: 0一定是由因子2和5相乘产生的: 2的个数显然大于5的个数,故只需统计因子5的个数 n/5不能完全表示n!中5的个数(egg: 25),应该n/=5后,累加上n/2 ...
- HDU 1124 Factorial (阶乘后缀0)
题意: 给一个数n,返回其阶乘结果后缀有几个0. 思路: 首先将n个十进制数进行质因数分解,观察的得到只有2*5才会出现10.那么n!应含有min(2个数,5个数)个后缀0,明显5的个数必定比2少,所 ...
- 求N!尾数有多少个0。
方法一:假设N!=K*10M,K不能被10整除,那么N!尾数就有M个0.再对N!进行质因子分解:N!=2x*3y*5z...由于10=2*5,即每一对2和5相乘都可以得到1个0,所以M只与指数x.z有 ...
- 题解报告:hdu 1398 Square Coins(母函数或dp)
Problem Description People in Silverland use square coins. Not only they have square shapes but also ...
- 题解报告:hdu 2069 Coin Change(暴力orDP)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2069 Problem Description Suppose there are 5 types of ...
- 题解报告:hdu 1028 Ignatius and the Princess III(母函数or计数DP)
Problem Description "Well, it seems the first problem is too easy. I will let you know how fool ...
- 2015浙江财经大学ACM有奖周赛(一) 题解报告
2015浙江财经大学ACM有奖周赛(一) 题解报告 命题:丽丽&&黑鸡 这是命题者原话. 题目涉及的知识面比较广泛,有深度优先搜索.广度优先搜索.数学题.几何题.贪心算法.枚举.二进制 ...
- cojs 强连通图计数1-2 题解报告
OwO 题目含义都是一样的,只是数据范围扩大了 对于n<=7的问题,我们直接暴力搜索就可以了 对于n<=1000的问题,我们不难联想到<主旋律>这一道题 没错,只需要把方程改一 ...
随机推荐
- Meteor ToDo App实例
在本章中,我们将创建一个简单的待办事项应用程序. 第1步 - 创建应用程序 打开命令提示符,运行以下命令 - C:\Users\Administrator\Desktop>meteor crea ...
- cocoapods应用第一部分-xcode创建.framework相关
问题的提出: 随着项目的越来越大,可能会出现好几个团队共同维护一个项目的情况,比如:项目组A负责当中的A块,项目组B负责当中的B块.....这几块彼此之间既独立,也相互联系.对于这样的情况,能够採用约 ...
- SharePoint 2013 调查问卷的使用方法
SharePoint 2013 调查问卷的使用方法 1,介绍调查问卷的用法. 2.图形和全部结果. 3,控制用户仅仅能看到自己答案. 1.确认有权限,假设没有管理管理权限请向管理员申请. 站点&quo ...
- Visual Studio VS如何拷贝一个项目的窗体文件到另一个项目
1 比如下我有一个项目,我要把这个Config整个窗体和代码拷贝到另一个项目 2 在新项目中添加现有项,然后把这个窗体相关的三个文件都添加到新的项目中 3 然后在新窗体中就什么都有了 ...
- Guava ---- Concurrent并发
Guava在JDK1.5的基础上, 对并发包进行扩展. 有一些是易用性的扩展(如Monitor). 有一些是功能的完好(如ListenableFuture). 再加上一些函数式编程的特性, 使并发包的 ...
- SqlServer 经常使用分页方法总结
SqlServer 经常使用分页方法总结 以下演示样例总结了,SqlServer数据库 经常使用分页方法,仅供学习參考 A. 使用 RowNumber 和 Between And 组合分页: /*** ...
- 剑指Offer面试题15(Java版):链表中倒数第K个结点
题目: 输入一个链表.输出该链表中倒数第k哥结点. 为了符合大多数人的习惯,本题从1開始计数.即链表的尾结点是倒数第1个结点. 比如一个链表有6个结点.从头结点開始它们的值依次是1.2.3,4,5, ...
- Redis Server分布式缓存编程
这篇文章我将介绍如果用最简洁的方式配置Redis Server, 以及如何使用C#和它交互编程 一. 背景介绍 Redis是最快的key-value分布式缓存之一 缺点: 没有本地数据缓冲, 目前还没 ...
- Android进阶图片处理之三级缓存方案
图片的三级缓存 一.概述 一開始在学习Android的时候.处理图片的时候,每次获取图片都是直接从网络上面载入图片. 可是在开发项目的过程中,每次点击进入app里面,图片都要慢慢的再一次从网络上面载入 ...
- Part1-Redefining your data-access strategy 重新定义你的数据访问策略
欢迎来到Entity Framework 4 In Action,EF是微软3.5 SP1推出的ORM工具,现在已经更新到4.0版本(...)本书能确保你in a robust and model- ...