题目链接:http://poj.org/problem?id=1330

A rooted tree is a well-known data structure in computer science and engineering. An example is shown below:

In the figure, each node is labeled with an integer from {1, 2,...,16}. Node 8 is the root of the tree. Node x is an ancestor of node y if node x is in the path between the root and node y. For example, node 4 is an ancestor of node 16. Node 10 is also an ancestor of node 16. As a matter of fact, nodes 8, 4, 10, and 16 are the ancestors of node 16. Remember that a node is an ancestor of itself. Nodes 8, 4, 6, and 7 are the ancestors of node 7. A node x is called a common ancestor of two different nodes y and z if node x is an ancestor of node y and an ancestor of node z. Thus, nodes 8 and 4 are the common ancestors of nodes 16 and 7. A node x is called the nearest common ancestor of nodes y and z if x is a common ancestor of y and z and nearest to y and z among their common ancestors. Hence, the nearest common ancestor of nodes 16 and 7 is node 4. Node 4 is nearer to nodes 16 and 7 than node 8 is.

For other examples, the nearest common ancestor of nodes 2 and 3 is node 10, the nearest common ancestor of nodes 6 and 13 is node 8, and the nearest common ancestor of nodes 4 and 12 is node 4. In the last example, if y is an ancestor of z, then the nearest common ancestor of y and z is y.

Write a program that finds the nearest common ancestor of two distinct nodes in a tree. 

题意描述:在一个DAG中,定义节点u是节点v的祖先:节点u是树根到节点v的路径上的一个节点。 给出一些节点之间的关系,求出两个节点的最近公共祖先。

算法分析:最近公共祖先(LCA)的入门题。

最近公共祖先算法的大致思路:

1:求出每个节点的2^k(0<=k<max_log_n)的祖先节点。节点u的2^0(第一代)祖先节点就是u的父亲节点,那么我们可以得到u的第一代、第二代、第四代、第八代...祖先节点。

2:把节点u和v深度大的节点根据1中的算法思想移到和深度小的节点同一深度(树根深度为0,树根的儿子节点深度为1),然后再一起往上移,即可求出LCA。

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#include<vector>
#define inf 0x7fffffff
using namespace std;
const int maxn=+;
const int max_log_maxn=; int n,A,B,root;
vector<int> G[maxn];
int father[max_log_maxn][maxn],d[maxn]; void dfs(int u,int p,int depth)
{
father[][u]=p;
d[u]=depth;
int num=G[u].size();
for (int i= ;i<num ;i++)
{
int v=G[u][i];
if (v != father[][u]) dfs(v,u,depth+);
}
} void init()
{
dfs(root,-,);
for (int k= ;k+<max_log_maxn ;k++)
{
for (int i= ;i<=n ;i++)
{
if (father[k][i]<) father[k+][i]=-;
else father[k+][i]=father[k][father[k][i] ];
}
}
} int LCA()
{
if (d[A]<d[B]) swap(A,B);
for (int k= ;k<max_log_maxn ;k++)
{
if ((d[A]-d[B])>>k & )
{
A=father[k][A];
}
}
if (A==B) return A;
for (int k=max_log_maxn- ;k>= ;k--)
{
if (father[k][A] != father[k][B])
{
A=father[k][A];
B=father[k][B];
}
}
return father[][A];
} int main()
{
int t;
scanf("%d",&t);
while (t--)
{
scanf("%d",&n);
for (int i= ;i<=n ;i++) G[i].clear();
for (int i= ;i<max_log_maxn ;i++)
{
for (int j= ;j<maxn ;j++)
father[i][j]=-;
}
int a,b;
int vis[maxn];
memset(vis,,sizeof(vis));
for (int i= ;i<n- ;i++)
{
scanf("%d%d",&a,&b);
G[a].push_back(b);
vis[b]=;
}
scanf("%d%d",&A,&B);
for (int i= ;i<=n ;i++) if (!vis[i]) {root=i;break; }
init();
printf("%d\n",LCA());
}
return ;
}

poj 1330 Nearest Common Ancestors LCA的更多相关文章

  1. POJ.1330 Nearest Common Ancestors (LCA 倍增)

    POJ.1330 Nearest Common Ancestors (LCA 倍增) 题意分析 给出一棵树,树上有n个点(n-1)条边,n-1个父子的边的关系a-b.接下来给出xy,求出xy的lca节 ...

  2. POJ 1330 Nearest Common Ancestors LCA题解

    Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 19728   Accept ...

  3. poj 1330 Nearest Common Ancestors lca 在线rmq

    Nearest Common Ancestors Description A rooted tree is a well-known data structure in computer scienc ...

  4. POJ 1330 Nearest Common Ancestors (LCA,倍增算法,在线算法)

    /* *********************************************** Author :kuangbin Created Time :2013-9-5 9:45:17 F ...

  5. POJ 1330 Nearest Common Ancestors(LCA模板)

    给定一棵树求任意两个节点的公共祖先 tarjan离线求LCA思想是,先把所有的查询保存起来,然后dfs一遍树的时候在判断.如果当前节点是要求的两个节点当中的一个,那么再判断另外一个是否已经访问过,如果 ...

  6. POJ - 1330 Nearest Common Ancestors(基础LCA)

    POJ - 1330 Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000KB   64bit IO Format: %l ...

  7. POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA)

    POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA) Description A ...

  8. POJ 1330 Nearest Common Ancestors(lca)

    POJ 1330 Nearest Common Ancestors A rooted tree is a well-known data structure in computer science a ...

  9. POJ 1330 Nearest Common Ancestors 倍增算法的LCA

    POJ 1330 Nearest Common Ancestors 题意:最近公共祖先的裸题 思路:LCA和ST我们已经很熟悉了,但是这里的f[i][j]却有相似却又不同的含义.f[i][j]表示i节 ...

随机推荐

  1. c#自定义控件属性面板及选择资源设置

    博客转移到 http://jacean.github.io/ 继续分享编程经验 因为要做流体布局,但两个控件没办法组合,就做自定义控件.这个控件需要一个text设置文本,一个pic设置图片显示,图片通 ...

  2. Silverlight中本地化的实现(语言切换)

    对于本地化这个功能我个人一直觉得在需求阶段就要确定该项目需不需要实行本地化,这样后面就可以减轻许多工作量,Sl中对本地化功能的支持与ASP.NET 中一样,主要使用CultureInfo类来完成的. ...

  3. Operation is not valid due to the current state of the object.

    今天遇到一个asp.net的草郁闷的问题,看下截图 狂晕啊,在google上狂搜了一下,好在已经有大侠也遇到过这个问题了,先看下别人的解决办法吧 Operation is not valid due ...

  4. 前端javascript发送ajax请求、后台书写function小案例

    HTML端页面: <td> <input class="pp_text" type="text" name="" valu ...

  5. Incorrect column name 'productid '

    #1166 - Incorrect column name 'productid ' 解决方法:字段是复制的吧,复制的里面应该是有空格吧?检查一下,去掉就可以了哟,呵呵.  

  6. delphi XE7 中的消息

    在delphi XE7的程序开发中,消息机制保证进程间的通信. 在程序中,消息来自: 1)系统: 通知你的程序用户输入,涂画以及其他的系统范围的事件: 2)你的程序:不同的程序部分之间的通信信息.   ...

  7. Oracle之Linux下核心参数

    kernel.shmmax 用于定义单个共享内存段的最大值: 建议一个大的共享内存段能容纳整个SGA,这样在任何时候都不会有性能下降的隐患: 建议:32位Linux 物理内存大于4G 的设置为4G 即 ...

  8. python 逻辑运算符与比较运算符的差别

    文章内容摘自:http://www.cnblogs.com/vamei/archive/2012/05/29/2524376.html 逻辑运算符 and, or, not 比较运算符 ==, !=, ...

  9. [php]如何更改wamp默认的mysq空密码?

    最近刚开始学php,爬坑中.上午看了会儿书,下了个源码,把文件部署到www下之后,也导入了sql文件,但是进入之后显示 = =  一开始不知道是什么.后来百度之后发现是mysql的问题,应该是源码中p ...

  10. FineUI PK DWZ

    一.概述 FineUI(ExtAspNet)是基于 jQuery / ExtJS 的 ASP.NET 控件库. DWZ是基于JQuery的一个客户端框架. 二.比较 三.总结 这两个东西实质都是对控件 ...