https://leetcode.com/problems/lru-cache/

Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations: get and set.

get(key) - Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1.
set(key, value) - Set or insert the value if the key is not already present. When the cache reached its capacity, it should invalidate the least recently used item before inserting a new item.

class pair {
public int key;
public int value;
public pair(int k, int v) {
super();
this.key = k;
this.value = v;
} public void setValue(int value) {
this.value = value;
} } class cmp implements Comparator { public int compare(Object o1, Object o2) {
pair p1 = (pair) o1;
pair p2 = (pair) o2; if(p1.key < p2.key) {
return -1;
} else if(p1.key == p2.key) {
if(p1.value == p2.value) {
return 0;
} else if(p1.value < p2.value) {
return -1;
} else {
return 1;
}
} else {
return 1;
}
}
}
public class LRUCache { public Set<pair> stack = null;
public HashMap<Integer, Integer> mapping = null;
public TreeMap<Integer, Integer> timeToKey = null;
public TreeMap<Integer, Integer> keyToTime = null;
public int cap = 0;
public int counter = 0; public LRUCache(int capacity) {
this.mapping = new HashMap<Integer, Integer> ();
this.timeToKey = new TreeMap<Integer, Integer> ();
this.keyToTime = new TreeMap<Integer, Integer> ();
this.cap = capacity;
this.counter = 0;
} public int get(int key) { if(!mapping.containsKey(key)) {
return -1;
} else { counter++;
int value = mapping.get(key); int time = keyToTime.get(key);
keyToTime.put(key, counter); timeToKey.remove(time);
timeToKey.put(counter, key); return value;
}
} public void set(int key, int value) { counter++; if(mapping.containsKey(key)) { int time = keyToTime.get(key);
keyToTime.put(key, counter); timeToKey.remove(time);
timeToKey.put(counter, key); mapping.put(key, value); } else { if(mapping.size() < cap) { mapping.put(key, value);
keyToTime.put(key, counter);
timeToKey.put(counter, key); } else { int lru = timeToKey.pollFirstEntry().getValue();
mapping.remove(lru);
mapping.put(key, value); keyToTime.put(key, counter);
timeToKey.put(counter, key);
}
}
}
}

leetcode@ [146] LRU Cache (TreeMap)的更多相关文章

  1. leetcode 146. LRU Cache 、460. LFU Cache

    LRU算法是首先淘汰最长时间未被使用的页面,而LFU是先淘汰一定时间内被访问次数最少的页面,如果存在使用频度相同的多个项目,则移除最近最少使用(Least Recently Used)的项目. LFU ...

  2. [LeetCode] 146. LRU Cache 最近最少使用页面置换缓存器

    Design and implement a data structure for Least Recently Used (LRU) cache. It should support the fol ...

  3. Java for LeetCode 146 LRU Cache 【HARD】

    Design and implement a data structure for Least Recently Used (LRU) cache. It should support the fol ...

  4. [LeetCode] 146. LRU Cache 近期最少使用缓存

    Design and implement a data structure for Least Recently Used (LRU) cache. It should support the fol ...

  5. leetcode 146. LRU Cache ----- java

    esign and implement a data structure for Least Recently Used (LRU) cache. It should support the foll ...

  6. Leetcode#146 LRU Cache

    原题地址 以前Leetcode的测试数据比较弱,单纯用链表做也能过,现在就不行了,大数据会超时.通常大家都是用map+双向链表做的. 我曾经尝试用C++的list容器来写,后来发现map没法保存lis ...

  7. 【LeetCode】146. LRU Cache 解题报告(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 字典+双向链表 日期 题目地址:https://le ...

  8. 【LeetCode】146. LRU Cache

    LRU Cache Design and implement a data structure for Least Recently Used (LRU) cache. It should suppo ...

  9. LeetCode之LRU Cache 最近最少使用算法 缓存设计

    设计并实现最近最久未使用(Least Recently Used)缓存. 题目描述: Design and implement a data structure for Least Recently ...

随机推荐

  1. TFSAPI

    Team Foundation Server (TFS)工具的亮点之一是管理日常工作项, 工作项如Bug, Task,Task Case等. 使用TFS API编程访问TFS服务器中的工作项, 步骤如 ...

  2. php注册登录系统(一)-极简

    序 登录注册系统是日常上网最普通的操作,我设了一个分类一步步完善注册登录系统,若有哪里错误请慧教 所用语言:php 数据库 :mysql 本次实现功能: 1.用户注册 2.用户登录 主要文件: 完整代 ...

  3. 【转】Android 使用ORMLite 操作数据库

    Android 使用ORMLite 操作数据库   用过ssh,s2sh的肯定不会陌生 ,应该一学就会 第一步: 下载ormlite-android-4.41.jar和ormlite-core-4.4 ...

  4. Oracle数据库之三

    子查询 -- 就是在一个查询中包含多个select语句(一般就2个) select id,first_name,dept_id from s_emp; 想查询和Ben一个部门的员工的id,first_ ...

  5. number-of-boomerangs

    https://leetcode.com/problems/number-of-boomerangs/ package com.company; import java.util.*; class S ...

  6. 红黑树、B(+)树、跳表、AVL等数据结构,应用场景及分析,以及一些英文缩写

    在网上学习了一些材料. 这一篇:https://www.zhihu.com/question/30527705 AVL树:最早的平衡二叉树之一.应用相对其他数据结构比较少.windows对进程地址空间 ...

  7. how bootstrap fit into our website design?

    在web相关技术中,HTML代表了content,structure, CSS则负责styling,决定内容是如何展示的,javascript则主要负责interactive, behaviour. ...

  8. 51nod1225 余数之和

    打表可以看出规律.分块求就可以了. #include<cstdio> #include<cstring> #include<cctype> #include< ...

  9. NBUT 1122 Shameimaru's Candid Camera(水)

    题意: 给n*m个格子,初始时每个格子中有个数值为0,部分格子中含有炸弹,每个炸弹爆炸可以将周围的8个非炸弹格子中的数值加1,求全部炸弹炸完后那些非0且非炸弹格子中的数是多少. 思路: 另开一个矩阵, ...

  10. 正则化,数据集扩增,Dropout

    正则化方法:防止过拟合,提高泛化能力 在训练数据不够多时,或者overtraining时,常常会导致overfitting(过拟合).其直观的表现如下图所示,随着训练过程的进行,模型复杂度增加,在tr ...