poj2986A Triangle and a Circle&&poj3675Telescope(三角形剖分)
2986是3675的简化版,只有一个三角形。
这题主要在于求剖分后三角形与圆的相交面积,需要分情况讨论。
具体可以看此博客 http://hi.baidu.com/billdu/item/703ad4e15d819db52f140b0b
在分析第3、4两种情况时,我是用角度来进行判断的,如果<obc||<ocb大于90度就为他所说的第四种情况,不然就是第三种情况。
还有对于sig的解释貌似网上都没写,可能都觉得太简单了。。。自己手画了一下,大体是这个样子的
红色标记那块三角形是需要减掉对于当前多边形,可以看出以最下角进行剖分三角形时,cross(b,c)算的那块小三角形的确是负的,所以需要判断一下当前的面积是要加上的还是要减掉的。
讨论的东西比较多,细节比较多,WA了好多遍,对着数据查了好久终于过了。。
附上一些数据
#include <iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<stdlib.h>
#include<vector>
#include<cmath>
#include<queue>
#include<set>
using namespace std;
#define N 100
#define LL long long
#define INF 0xfffffff
const double eps = 1e-;
const double pi = acos(-1.0);
const double inf = ~0u>>;
struct point
{
double x,y;
point(double x=,double y=):x(x),y(y) {}
} p[N];
struct tri
{
point a,b,c;
} tr[N];
typedef point pointt;
point operator -(point a,point b)
{
return point(a.x-b.x,a.y-b.y);
}
point operator *(point a,double r)
{
return point(a.x*r,a.y*r);
}
point operator +(point a,point b)
{
return point(a.x+b.x,a.y+b.y);
}
struct line
{
point u,v;
point ppoint(double t)
{
return point(u+v*t);
}
};
struct circle
{
point c;
double r;
circle(point c,double r):c(c),r(r) {}
point ppoint(double a)
{
return point(c.x+cos(a)*r,c.y+sin(a)*r);
}
};
double r;
point ip;
double dcmp(double x)
{
if(fabs(x)<eps) return ;
return x<?-:;
}
double dis(point a)
{
return sqrt(a.x*a.x+a.y*a.y);
}
double dot(point a,point b)
{
return a.x*b.x+a.y*b.y;
}
double cross(point a,point b)
{
return a.x*b.y-a.y*b.x;
}
double area(point a,point b,point c)
{
return fabs(cross(a-c,b-c))/;
} int getlinecircle(line ll,circle cc,point &p1,point &p2)
{
double a = ll.v.x,b = ll.u.x-cc.c.x,c = ll.v.y,d = ll.u.y-cc.c.y;
double e = a*a+c*c,f = *(a*b+c*d),g = b*b+d*d-cc.r*cc.r;
double delta = f*f-*e*g;
double t1,t2;
if(dcmp(delta)<)return ;//ÏàÀë
if(dcmp(delta)==)
{
t1 = t2 = -f/(*e);//cout<<t1<<" -"<<e<<" "<<f<<endl;
p1 = ll.ppoint(t1);
return ;//ÏàÇÐ
}
//Ïཻ
t1 = (-f-sqrt(delta))/(*e);
p1 = ll.ppoint(t1);
t2 = (-f+sqrt(delta))/(*e);
p2 = ll.ppoint(t2);
// cout<<p1.x<<" "<<p1.y<<" "<<p2.x<<" "<<p2.y<<endl;
return ;
}
double mul(point a,point b,point c)
{
return cross(b-a,c-a);
}
bool cmp(point a,point b)
{
if(dcmp(mul(ip,a,b))==)
return dis(a-ip)<dis(b-ip);
else
return dcmp(mul(ip,a,b))>;
}
double distancetoline(point p,point a,point b)
{
point v1 = a-b,v2 = p-b;
return fabs(cross(v1,v2))/dis(v1);
}
int dot_online_in(point p,point l1,point l2)
{
return !dcmp(mul(p,l1,l2))&&(l1.x-p.x)*(l2.x-p.x)<eps&&(l1.y-p.y)*(l2.y-p.y)<eps;
}
double angle(point a,point b)
{
return acos(dot(a,b)/dis(a)/dis(b));
}
double cal(tri tr)
{
circle cp=circle(point(,),r);
int sig = dcmp(cross(tr.b,tr.c));
if(sig==) return ;
double d1 = dis(tr.a-tr.b),d2 = dis(tr.a-tr.c);
if(dcmp(d1-r)<=&&dcmp(d2-r)<=)
{
double s = sig*area(tr.a,tr.b,tr.c);
return s;
}
double dline = distancetoline(cp.c,tr.b,tr.c);
if(dcmp(d1-r)>=&&dcmp(d2-r)>=&&dcmp(dline-r)>=)
{
return sig*angle(tr.b,tr.c)*r*r/2.0;
}
double ag = angle(tr.c-tr.b,tr.a-tr.b),bg = angle(tr.b-tr.c,tr.a-tr.c);
point p1,p2;
line l1;
l1.u = tr.b,l1.v = tr.c-tr.b;
getlinecircle(l1,cp,p1,p2); if(dcmp(d1-r)>=&&dcmp(d2-r)>=&&dcmp(dline-r)<&&(dcmp(ag-pi/)>=||dcmp(bg-pi/)>=))
{ double s = sig*angle(tr.b,tr.c)*r*r/;
return s;
}
if(dcmp(d1-r)>=&&dcmp(d2-r)>=&&dcmp(dline-r)<)
{
double s = (angle(tr.b,tr.c)-angle(p1,p2))*r*r/2.0+area(tr.a,p1,p2);
return sig*s;
} p1 = dot_online_in(p1,tr.b,tr.c)?p1:p2;
if(dcmp(d1-r)<)
{
return sig*(angle(tr.c,p1)*r*r/+area(tr.a,p1,tr.b));
}
else
{
return sig*(angle(p1,tr.b)*r*r/+area(tr.a,p1,tr.c));
}
}
int dots_inline(point p1,point p2,point p3)
{
return !dcmp(mul(p1,p2,p3));
}
int main()
{
int i,n;
while(scanf("%lf",&r)!=EOF)
{
scanf("%d",&n);
for(i = ; i < n ; i++)
{
scanf("%lf%lf",&p[i].x,&p[i].y);
}
p[n] = p[];
double ans = ;
for(i = ; i < n ; i++)
{
if(dots_inline(ip,p[i],p[i+])) continue;
tr[i].a = point(,);
tr[i].b = p[i];
tr[i].c = p[i+];
ans+=cal(tr[i]);
}
printf("%.2f\n",fabs(ans)+eps);
}
return ;
}
589.00 191.00 -554.00 710.00 748.00 774.00 -888.00 -588.00 902.00
201.00 -847.00 -365.00 886.00 -557.00 -609.00 272.00 -345.00 189.00
-358.00 981.00 269.00 511.00 158.00 -304.00 468.00 463.00 834.00
969.00 514.00 -445.00 460.00 -177.00 774.00 -34.00 -125.00 162.00
-467.00 413.00 -714.00 -986.00 362.00 666.00 813.00 271.00 264.00
-497.00 908.00 -414.00 631.00 -220.00 868.00 166.00 -258.00 306.00
-107.00 -743.00 -952.00 322.00 -273.00 -214.00 -14.00 466.00 758.00
511.00 -416.00 -934.00 -745.00 -335.00 -132.00 -482.00 391.00 626.00
928.00 821.00 -293.00 -853.00 -488.00 -312.00 -27.00 94.00 361.00
-979.00 -280.00 791.00 -943.00 -300.00 -278.00 -821.00 684.00 365.00
-700.00 955.00 -315.00 154.00 -103.00 -606.00 404.00 -792.00 940.00
607.00 783.00 597.00 944.00 -672.00 -323.00 343.00 -799.00 526.00
815.00 -390.00 -291.00 37.00 422.00 687.00 672.00 613.00 848.00
-988.00 363.00 -529.00 660.00 -597.00 143.00 502.00 459.00 522.00
-206.00 484.00 109.00 -111.00 424.00 650.00 330.00 -545.00 480.00
94.00 -638.00 -59.00 -9.00 -400.00 -702.00 0.00 267.00 741.00
-859.00 522.00 109.00 -640.00 383.00 712.00 489.00 -663.00 635.00
808.00 -31.00 471.00 172.00 -374.00 21.00 120.00 -860.00 474.00
-539.00 -887.00 498.00 844.00 -453.00 -213.00 -479.00 -9.00 315.00
答案
Case 1
0.00
Case 2
0.00
Case 3
274955.27
Case 4
0.00
Case 5
0.00
Case 6
0.00
Case 7
25157.17
Case 8
9943.87
Case 9
181113.99
Case 10
0.00
Case 11
11846.16
Case 12
0.00
Case 13
404668.37
Case 14
0.00
Case 15
0.00
Case 16
74663.53
Case 17
80015.79
Case 18
0.00
Case 19
57316.85
Case 20
0.00
poj2986A Triangle and a Circle&&poj3675Telescope(三角形剖分)的更多相关文章
- POJ 2986 A Triangle and a Circle(三角形和圆形求交)
Description Given one triangle and one circle in the plane. Your task is to calculate the common are ...
- POJ 2986 A Triangle and a Circle 圆与三角形的公共面积
计算几何模板 #include<stdio.h> #include<string.h> #include<stdlib.h> #include<math.h& ...
- POJ 2986 A Triangle and a Circle
题意:给定一个三角形,以及一个圆的圆心坐标和半径,求圆和三角形的相交面积. 思路: 用三角剖分,三角形上每个线段都变成这个线段与圆心的三角形,然后算出每个三角形与圆的相交面积,然后根据有向面积的正负累 ...
- ACM计算几何题目推荐
//第一期 计算几何题的特点与做题要领: 1.大部分不会很难,少部分题目思路很巧妙 2.做计算几何题目,模板很重要,模板必须高度可靠. 3.要注意代码的组织,因为计算几何的题目很容易上两百行代码,里面 ...
- PHP面向对象实例(图形计算器)
效果:
- 对C++虚函数、虚函数表的简单理解
一.虚函数的作用 以一个通用的图形类来了解虚函数的定义,代码如下: #include "stdafx.h" #include <iostream> using name ...
- UVa 11524:In-Circle(解析几何)
Problem EIn-CircleInput: Standard Input Output: Standard Output In-circle of a triangle is the circl ...
- zoj 1010 (线段相交判断+多边形求面积)
链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=10 Area Time Limit: 2 Seconds Mem ...
- S1:new操作符
function Shape(type){ this.type = type || "rect"; this.calc = function(){ return "cal ...
随机推荐
- GCD 多线程同步
@property (strong, nonatomic) dispatch_queue_t barrierQueue; _barrieQueue = dispatch_queue_create(&q ...
- Readonly和disabled的区别 display:none和visible:hidden的区别
怎样使input中的内容为只读,也就是说不让用户更改里面的内容. <input type="text" name="input1" value=" ...
- C#:WPF绘制问题
1.问题描述:切换画笔后,鼠标呈现画笔,但绘制界面需要点击后才能绘制,体验比较差 注:如果将切换为画笔或橡皮擦的功能放在二级菜单中则无次问题 解决方法(大体如此): 1)在第三方中,先创建完绘制画面和 ...
- Shell 字符串比较
转自网络 Shell字符串比较 收藏 Shell 中整数比较方法及字符串的比较方法,如等于,不等于,大于,大于等于,小于,等等. 二元比较操作符,比较变量或者比较数字.注意数字与字符串的区别. --- ...
- js instanceof运算符
a instanceof B; instanceof检测对象a的原型链中有没有构造函数B.prototype 如下: function In (a, B) { var p = a.__proto__; ...
- JQuery知识快览之五—操作属性和结构
前文提到JQuery提供了丰富的内置方法来操作对象集,本文主要介绍JQuery中的那些内置操作属性和DOM结构的方法. prop还是attr? 从JQuery1.6版开始,新增了prop方法来获取和设 ...
- Android WebView中的JavaScript代码使用
在WebView中使用JavaScript 如果你想要载入的页面中用了JavaScript,你必须为你的WebView使能JavaScript. 一旦使能之后,你也可以自己创建接口在你的应用和Java ...
- C#中调用存储过程:带输入输出参数
using (SqlConnection conn = new SqlConnection(this.GetConnectionString(this.WMPDBName))) { SqlComman ...
- winform 发邮件
System.Net.Mail.SmtpClient client = new SmtpClient("smtp.163.com"); client.UseDefaultCre ...
- 关于myeclipse中maven项目转换相关设置
关于myeclipse中maven项目转换相关设置 在myeclipse菜单中,Configure->Convert to Maven Project 这个菜单 如果没有的话,需要做如下设置: ...