hdu 1053 Entropy
题目连接
http://acm.hdu.edu.cn/showproblem.php?pid=1053
Entropy
Description
An entropy encoder is a data encoding method that achieves lossless data compression by encoding a message with “wasted” or “extra” information removed. In other words, entropy encoding removes information that was not necessary in the first place to accurately encode the message. A high degree of entropy implies a message with a great deal of wasted information; english text encoded in ASCII is an example of a message type that has very high entropy. Already compressed messages, such as JPEG graphics or ZIP archives, have very little entropy and do not benefit from further attempts at entropy encoding.
English text encoded in ASCII has a high degree of entropy because all characters are encoded using the same number of bits, eight. It is a known fact that the letters E, L, N, R, S and T occur at a considerably higher frequency than do most other letters in english text. If a way could be found to encode just these letters with four bits, then the new encoding would be smaller, would contain all the original information, and would have less entropy. ASCII uses a fixed number of bits for a reason, however: it’s easy, since one is always dealing with a fixed number of bits to represent each possible glyph or character. How would an encoding scheme that used four bits for the above letters be able to distinguish between the four-bit codes and eight-bit codes? This seemingly difficult problem is solved using what is known as a “prefix-free variable-length” encoding.
In such an encoding, any number of bits can be used to represent any glyph, and glyphs not present in the message are simply not encoded. However, in order to be able to recover the information, no bit pattern that encodes a glyph is allowed to be the prefix of any other encoding bit pattern. This allows the encoded bitstream to be read bit by bit, and whenever a set of bits is encountered that represents a glyph, that glyph can be decoded. If the prefix-free constraint was not enforced, then such a decoding would be impossible.
Consider the text “AAAAABCD”. Using ASCII, encoding this would require 64 bits. If, instead, we encode “A” with the bit pattern “00”, “B” with “01”, “C” with “10”, and “D” with “11” then we can encode this text in only 16 bits; the resulting bit pattern would be “0000000000011011”. This is still a fixed-length encoding, however; we’re using two bits per glyph instead of eight. Since the glyph “A” occurs with greater frequency, could we do better by encoding it with fewer bits? In fact we can, but in order to maintain a prefix-free encoding, some of the other bit patterns will become longer than two bits. An optimal encoding is to encode “A” with “0”, “B” with “10”, “C” with “110”, and “D” with “111”. (This is clearly not the only optimal encoding, as it is obvious that the encodings for B, C and D could be interchanged freely for any given encoding without increasing the size of the final encoded message.) Using this encoding, the message encodes in only 13 bits to “0000010110111”, a compression ratio of 4.9 to 1 (that is, each bit in the final encoded message represents as much information as did 4.9 bits in the original encoding). Read through this bit pattern from left to right and you’ll see that the prefix-free encoding makes it simple to decode this into the original text even though the codes have varying bit lengths.
As a second example, consider the text “THE CAT IN THE HAT”. In this text, the letter “T” and the space character both occur with the highest frequency, so they will clearly have the shortest encoding bit patterns in an optimal encoding. The letters “C”, “I’ and “N” only occur once, however, so they will have the longest codes.
There are many possible sets of prefix-free variable-length bit patterns that would yield the optimal encoding, that is, that would allow the text to be encoded in the fewest number of bits. One such optimal encoding is to encode spaces with “00”, “A” with “100”, “C” with “1110”, “E” with “1111”, “H” with “110”, “I” with “1010”, “N” with “1011” and “T” with “01”. The optimal encoding therefore requires only 51 bits compared to the 144 that would be necessary to encode the message with 8-bit ASCII encoding, a compression ratio of 2.8 to 1.
Input
The input file will contain a list of text strings, one per line. The text strings will consist only of uppercase alphanumeric characters and underscores (which are used in place of spaces). The end of the input will be signalled by a line containing only the word “END” as the text string. This line should not be processed.
Output
For each text string in the input, output the length in bits of the 8-bit ASCII encoding, the length in bits of an optimal prefix-free variable-length encoding, and the compression ratio accurate to one decimal point.
Sample Input
AAAAABCD
THE_CAT_IN_THE_HAT
END
Sample Output
64 13 4.9
144 51 2.8
哈弗曼编码。。
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<string>
#include<queue>
#include<set>
using std::set;
using std::sort;
using std::swap;
using std::string;
using std::priority_queue;
#define pb(e) push_back(e)
#define sz(c) (int)(c).size()
#define mp(a, b) make_pair(a, b)
#define all(c) (c).begin(), (c).end()
#define iter(c) decltype((c).begin())
#define cls(arr, val) memset(arr, val, sizeof(arr))
#define cpresent(c, e) (find(all(c), (e)) != (c).end())
#define rep(i, n) for(int i = 0; i < (int)n; i++)
#define tr(c, i) for(iter(c) i = (c).begin(); i != (c).end(); ++i)
const int N = 30;
const int INF = 0x3f3f3f3f;
typedef unsigned long long ull;
char buf[11000];
struct Node {
char dat;
int w;
Node *ch[2];
Node(char _dat_, int _w_, Node *l = NULL, Node *r = NULL) {
dat = _dat_, w = _w_;
ch[0] = l, ch[1] = r;
}
Node(const Node &x) {
dat = x.dat, w = x.w;
ch[0] = x.ch[0], ch[1] = x.ch[1];
}
inline bool operator<(const Node &x) const {
return w > x.w;
}
};
struct Hoffmancode {
int sum;
Node *root;
priority_queue<Node> q;
inline char to_lower(char ch) {
return ch >= 'A' && ch <= 'Z' ? ch + 32 : ch;
}
inline void CreateHoffmanTree() {
Node *l = NULL, *r = NULL;
while (!q.empty() && q.size() != 1) {
l = new Node(q.top()); q.pop();
r = new Node(q.top()); q.pop();
Node ret(0, l->w + r->w, l, r);
q.push(ret);
}
if (!q.empty()) {
root = new Node(q.top()); q.pop();
}
}
inline void CreateHoffmanCode(Node *x, string str) {
if (!x) return;
if (x->dat != 0) {
sum += (str.length() * x->w);
}
CreateHoffmanCode(x->ch[0], str + "0");
CreateHoffmanCode(x->ch[1], str + "1");
}
inline void solve() {
sum = 0, root = NULL;
int arr[N] = { 0 }, tot = 0, n = strlen(buf);
while (!q.empty()) q.pop();
for (int i = 0; i < n; i++) {
arr[to_lower(buf[i]) - '_']++;
}
for (int i = 0; i < 28; i++) {
if (arr[i]) {
tot++;
Node ret('_' + i, arr[i]);
q.push(ret);
}
}
if (1 == tot) {
printf("%d %d 8.0\n", n * 8, n);
return;
}
CreateHoffmanTree();
CreateHoffmanCode(root, "");
printf("%d %d %.1lf\n", n * 8, sum, (double)(n * 8) / sum);
}
}work;
int main() {
#ifdef LOCAL
freopen("in.txt", "r", stdin);
freopen("out.txt", "w+", stdout);
#endif
while (~scanf("%s", buf) && 0 != strcmp(buf, "END")) {
work.solve();
}
return 0;
}
hdu 1053 Entropy的更多相关文章
- HDU 1053 Entropy(哈夫曼编码 贪心+优先队列)
传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1053 Entropy Time Limit: 2000/1000 MS (Java/Others) ...
- hdu 1053 Entropy (哈夫曼树)
Entropy Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Sub ...
- HDU 1053 & HDU 2527 哈夫曼编码
http://acm.hdu.edu.cn/showproblem.php?pid=1053 #include <iostream> #include <cstdio> #in ...
- hdoj 1053 Entropy(用哈夫曼编码)优先队列
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1053 讲解: 题意:给定一个字符串,根据哈夫曼编码求出最短长度,并求出比值. 思路:就是哈夫曼编码.把 ...
- hdu 1053 (huffman coding, greedy algorithm, std::partition, std::priority_queue ) 分类: hdoj 2015-06-18 19:11 22人阅读 评论(0) 收藏
huffman coding, greedy algorithm. std::priority_queue, std::partition, when i use the three commente ...
- 【HDOJ】1053 Entropy
构造huffman编码,果断对字符进行状态压缩. #include <iostream> #include <cstdio> #include <cstring> ...
- HDU题解索引
HDU 1000 A + B Problem I/O HDU 1001 Sum Problem 数学 HDU 1002 A + B Problem II 高精度加法 HDU 1003 Maxsu ...
- CSU-ACM2018暑期训练7-贪心
A:合并果子(贪心+优先队列) B:HDU 1789 Doing Homework again(非常经典的贪心) C:11572 - Unique Snowflakes(贪心,两指针滑动保存子段最大长 ...
- hdu 2527 Safe Or Unsafe (哈夫曼树)
Safe Or Unsafe Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)To ...
随机推荐
- [Oracle] 中的Temporary tablespace的作用
临时表空间主要用途是在数据库进行排序运算[如创建索引.order by及group by.distinct.union/intersect/minus/.sort-merge及join.analyze ...
- js object 对象 属性和方法的使用
//object 对象 属性和方法的使用 var person = new Object(); person.name="张海"; person.age="; perso ...
- Java 对字符反转操作。
//把一段字符串反转后大小写互换位置 public class test_demo { public static void main(String[] args)throws Exception { ...
- asp.net Global.asax 方法的使用和说明
Global.asax 文件,有时候叫做 ASP.NET 应用程序文件,提供了一种在一个中心位置响应应用程序级或模块级事件的方法你可以使用这个文件实现应用程序安全性以及其它一些任务下面让我们详细看一 ...
- Hadoop的shell脚本分析
你会发现hadoop-daemon.sh用于启动单独的本机节点 而hadoop-daemons.sh 会批量的ssh到别的机器启动 前记: 这些天一直学习hadoop,学习中也遇到了许多的问题,主要是 ...
- SID与GUID的区别
1.在AD里面创建一个用户或者组都会为其分配一个SID,同时也会为这些对象分配一个GUID,GUID是一个128位的字符串,一个标识符,GUID不仅在整个域里面是唯一的,并且在全世界的范围内都是唯一的 ...
- boa服务器安装
boa是一个轻量级的web服务器,单进程单任务模式,支持CGI,是嵌入式行业应用较广的一个轻量级服务器系统. 这是我准备往嵌入式开发板里移植的时候在ubuntu上做的实验.多少有点参考价值. 现在简要 ...
- ADO.NET中的Connection详解
连接字符串 1.写法一 "Data Source=服务器名; Initial Catalog=数据库; User ID =用户名; Password=密码; Charset=UTF8; &q ...
- Tomcat启动过程(三):从SocketProcessor到Container
1.Http11Protocol中的内部类Http11ConnectionHandler,执行其process方法 if (processor == null) { processor = creat ...
- MySQL语法
sql(structure query language)结构化查询语言ansi iso/iec组织制定ddl(data definition language) 数据定义语言dml(manipula ...