Description

《集合论与图论》这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中。同学们不喜欢这种具有枚举性 质的题目,于是把它变成了以下问题:对于任意一个正整数 n≤100000,如何求出{1, 2,..., n} 的满足上述约束条件的子集的个数(只需输出对 1,000,000,001 取模的结果),现在这个问题就 交给你了。

Input

只有一行,其中有一个正整数 n,30%的数据满足 n≤20。

Output

仅包含一个正整数,表示{1, 2,..., n}有多少个满足上述约束条件 的子集。

状压dp

将问题转化为在求图上选不相邻的点的总方案数

1 3 9 27 81
2 6 18 54 162
4 12 36 108 324
8 24 72 216 ...
16 48 144 ...  
5 15 45 135
10 30 90 270
20 60 180 540
40 120 360 ...
7 21 63
14 42 126
28 84 252

...

取每个表中不超过n的部分分别计算方案数

每个表水平方向最多11列,竖直方向最多17行

由于不同表中选数互不干扰,将每个表的方案数相乘即为最终答案

#include<cstdio>
#define P 1000000001
int n;
long long f[][];
bool hf[];
bool d[];
long long Ans=;
int main(){
f[][]=;
for(int i=;i<;i++)if(!(i&(i>>))&&!(i&(i<<)))hf[i]=;
scanf("%d",&n);
for(int w=;w<=n;w++){
if(d[w])continue;
int pp=,ii=;
long long ans=;
for(int i=w;i<=n;i+=i,ii++){
int a=,b=i;
while(b<=n)d[b]=,b*=,a++;
int pn=<<a;
for(int j=;j<pn;j++){
f[ii][j]=;
for(int k=;k<pp;k++)
if(hf[j]&&hf[k]&&!(j&k))(f[ii][j]+=f[ii-][k])%=P;
}
pp=pn;
}
ii--;
for(int i=;i<pp;i++)(ans+=f[ii][i])%=P;
Ans*=ans;
Ans%=P;
}
printf("%lld",Ans);
return ;
}

bzoj2734 集合选数的更多相关文章

  1. 【BZOJ2734】【HNOI2012】集合选数(状态压缩,动态规划)

    [BZOJ2734][HNOI2012]集合选数(状态压缩,动态规划) 题面 Description <集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所 ...

  2. 【BZOJ-2734】集合选数 状压DP (思路题)

    2734: [HNOI2012]集合选数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1070  Solved: 623[Submit][Statu ...

  3. bzoj2734【HNOI2012】集合选数

    2734: [HNOI2012]集合选数 Time Limit: 10 Sec  Memory Limit: 128 MB Submit: 831  Solved: 487 [Submit][Stat ...

  4. 【BZOJ-2732】集合选数 状压DP (思路题)

    2734: [HNOI2012]集合选数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1070  Solved: 623[Submit][Statu ...

  5. bzoj 2734: [HNOI2012]集合选数 状压DP

    2734: [HNOI2012]集合选数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 560  Solved: 321[Submit][Status ...

  6. BZOJ_2734_[HNOI2012]集合选数_构造+状压DP

    BZOJ_2734_[HNOI2012]集合选数_构造+状压DP 题意:<集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x ...

  7. 2734: [HNOI2012]集合选数

    2734: [HNOI2012]集合选数 链接 分析: 转化一下题意. 1 3 9 27... 2 6 18 54... 4 12 36 108... 8 24 72 216... ... 写成这样的 ...

  8. [HNOI2012]集合选数 --- 状压DP

    [HNOI2012]集合选数 题目描述 <集合论与图论>这门课程有一道作业题,要求同学们求出\({1,2,3,4,5}\)的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x ...

  9. 状压DP之集合选数

    题目 [HNOI2012]集合选数 <集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不 ...

随机推荐

  1. PAT (Basic Level) Practise:1006. 换个格式输出整数

    [题目链接] 让我们用字母B来表示“百”.字母S表示“十”,用“12...n”来表示个位数字n(<10),换个格式来输出任一个不超过3位的正整数.例如234应该被输出为BBSSS1234,因为它 ...

  2. 解决load 函数无法赋予变量名的问题

    以前非常喜欢使用load函数,因为简单,而且存储相对较大的matrix.list文件更为方便.但是load函数有一个问题是在使用其过程中无法对其载入的data赋予变量名: # save data x ...

  3. html中的元素和节点

    元素(Element)和结点(Node)的区别, 元素是一个小范围的定义,必须是含有完整信息的结点才是一个元素,例如<div>...</div>. 但是一个结点不一定是一个元素 ...

  4. SAP 增强说明

    转自http://blog.csdn.net/lyb_yt/article/details/8177974 (一)什么是增强(Enhancement)? 简单地说,增强就是ERP系统中标准程序的出口, ...

  5. Android ADT初始化失败

    在android的官网上买下载android的adt完了,进行解压之后,开始点击 eclipse.exe,果然给了我一个惊喜,那就是 [ Failed to create the Java Virtu ...

  6. 去除包裹的a标签

    <div id="test">  <a href="http://www.cnblogs.com">Link 1</a>   ...

  7. Codeforces Round #135 (Div. 2)

    A. k-String 统计每个字母出现次数即可. B. Special Offer! Super Price 999 Bourles! 枚举末尾有几个9,注意不要爆掉\(long\ long\)的范 ...

  8. 课堂所讲整理:HTML--6运算符、类型转换

    1.类型转换: 分为自动转换和强制转换,一般用强制转换. 其他类型转换为整数:parseint(): 其他类型转换为小数:parsefloat(): 判断是否是一个合法的数字类型:isNaN(): 是 ...

  9. 软件推荐 - Source Insight

    一直以来从事的开发工作,涉及的范围很杂,乱七八糟的都有,其中有一项占据了比较长的时间,那就是固件程序的开发,不涉及操作系统,也就是一般意义上大家所说的裸跑程序.​用过的芯片杂七杂八,比较主要的有Ate ...

  10. 【转】iOS静态库 【.a 和framework】【超详细】

    原文网址:https://my.oschina.net/kaqijiang/blog/649632 一.什么是库? 库是共享程序代码的方式. 库从本质上来说是一种可执行代码的二进制格式,可以被载入内存 ...