A Simple Problem with Integers
Time Limit: 5000MS   Memory Limit: 131072K
Total Submissions: 60745   Accepted: 18522
Case Time Limit: 2000MS

Description

You have N integers, A1A2, ... , AN. You need to deal with two kinds of operations. One type of operation is to add some given number to each number in a given interval. The other is to ask for the sum of numbers in a given interval.

Input

The first line contains two numbers N and Q. 1 ≤ N,Q ≤ 100000.
The second line contains N numbers, the initial values of A1A2, ... , AN. -1000000000 ≤ Ai ≤ 1000000000.
Each of the next Q lines represents an operation.
"C a b c" means adding c to each of AaAa+1, ... , Ab. -10000 ≤ c ≤ 10000.
"Q a b" means querying the sum of AaAa+1, ... , Ab.

Output

You need to answer all Q commands in order. One answer in a line.

Sample Input

10 5
1 2 3 4 5 6 7 8 9 10
Q 4 4
Q 1 10
Q 2 4
C 3 6 3
Q 2 4

Sample Output

4
55
9
15

Hint

The sums may exceed the range of 32-bit integers.

Source

 
代码:
#include<cstdio>
#include<cstring>
const int maxn=;
struct node
{
int lef,rig;
__int64 sum,cnt;
int mid(){
return lef+(rig-lef>>);
}
};
node reg[maxn<<]; void Build(int left ,int right,int pos)
{
reg[pos]=(node){left,right,,};
if((left==right))
{
scanf("%I64d",&reg[pos].sum);
return ;
}
int mid=reg[pos].mid();
Build(left,mid,pos<<);
Build(mid+,right,pos<<|);
reg[pos].sum=reg[pos<<].sum+reg[pos<<|].sum;
}
void Update(int left,int right,int pos,int val)
{
if(reg[pos].lef>=left&&reg[pos].rig<=right)
{
reg[pos].cnt+=val;
reg[pos].sum+=val*(reg[pos].rig-reg[pos].lef+);
return ;
}
if(reg[pos].cnt)
{
reg[pos<<].cnt+=reg[pos].cnt;
reg[pos<<|].cnt+=reg[pos].cnt;
reg[pos<<].sum+=reg[pos].cnt*(reg[pos<<].rig-reg[pos<<].lef+);
reg[pos<<|].sum+=reg[pos].cnt*(reg[pos<<|].rig-reg[pos<<|].lef+);
reg[pos].cnt=;
}
int mid=reg[pos].mid();
if(left<=mid)
Update(left,right,pos<<,val);
if(right>mid)
Update(left,right,pos<<|,val);
reg[pos].sum=reg[pos<<].sum+reg[pos<<|].sum;
}
__int64 Query(int left,int right,int pos)
{
if(left<=reg[pos].lef&&reg[pos].rig<=right)
{
return reg[pos].sum;
}
if(reg[pos].cnt) //再向下更新一次
{
reg[pos<<].cnt+=reg[pos].cnt;
reg[pos<<|].cnt+=reg[pos].cnt;
reg[pos<<].sum+=reg[pos].cnt*(reg[pos<<].rig-reg[pos<<].lef+);
reg[pos<<|].sum+=reg[pos].cnt*(reg[pos<<|].rig-reg[pos<<|].lef+);
reg[pos].cnt=;
}
int mid=reg[pos].mid();
__int64 res=;
if(left<=mid)
res+=Query(left,right,pos<<);
if(mid<right)
res+=Query(left,right,pos<<|);
return res;
}
int main()
{
int n,m,a,b,c;
char ss;
while(scanf("%d%d",&n,&m)!=EOF)
{
Build(,n,);
while(m--)
{
getchar();
scanf("%c %d%d",&ss,&a,&b);
if(ss=='Q')
printf("%I64d\n",Query(a,b,));
else{
scanf("%d",&c);
Update(a,b,,c);
}
}
}
return ;
}

poj------(3468)A Simple Problem with Integers(区间更新)的更多相关文章

  1. POJ.3468 A Simple Problem with Integers(线段树 区间更新 区间查询)

    POJ.3468 A Simple Problem with Integers(线段树 区间更新 区间查询) 题意分析 注意一下懒惰标记,数据部分和更新时的数字都要是long long ,别的没什么大 ...

  2. poj 3468 A Simple Problem with Integers 【线段树-成段更新】

    题目:id=3468" target="_blank">poj 3468 A Simple Problem with Integers 题意:给出n个数.两种操作 ...

  3. 线段树(成段更新) POJ 3468 A Simple Problem with Integers

    题目传送门 /* 线段树-成段更新:裸题,成段增减,区间求和 注意:开long long:) */ #include <cstdio> #include <iostream> ...

  4. POJ 3468 A Simple Problem with Integers(线段树功能:区间加减区间求和)

    题目链接:http://poj.org/problem?id=3468 A Simple Problem with Integers Time Limit: 5000MS   Memory Limit ...

  5. poj 3468 A Simple Problem with Integers(线段树+区间更新+区间求和)

    题目链接:id=3468http://">http://poj.org/problem? id=3468 A Simple Problem with Integers Time Lim ...

  6. POJ 3468 A Simple Problem with Integers(分块入门)

    题目链接:http://poj.org/problem?id=3468 A Simple Problem with Integers Time Limit: 5000MS   Memory Limit ...

  7. poj 3468 A Simple Problem with Integers 线段树区间加,区间查询和

    A Simple Problem with Integers Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://poj.org/problem?i ...

  8. poj 3468 A Simple Problem with Integers 线段树区间加,区间查询和(模板)

    A Simple Problem with Integers Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://poj.org/problem?i ...

  9. poj 3468:A Simple Problem with Integers(线段树,区间修改求和)

    A Simple Problem with Integers Time Limit: 5000MS   Memory Limit: 131072K Total Submissions: 58269   ...

  10. [POJ] 3468 A Simple Problem with Integers [线段树区间更新求和]

    A Simple Problem with Integers   Description You have N integers, A1, A2, ... , AN. You need to deal ...

随机推荐

  1. Update与FixedUpdate区别

    以下的代码能使游戏暂停,记得要使速度*Time.deltaTime,目的是保证游戏运行在帧数不同的情况下,角色移动速度都一样,因为此时角色是按时间移动与帧数无关. using UnityEngine; ...

  2. C#正则表达式获取组名,按照组名输出匹配内容

    最近写了个正则表达式匹配的工具,可以按照组名输出匹配内容,还是挺方便的,代码留存一下,以后用的话,直接copy了. Regex regex = new Regex(this.textBoxRegex. ...

  3. 回归——线性回归,Logistic回归,范数,最大似然,梯度,最小二乘……

    写在前面:在本篇博客中,旨在对线性回归从新的角度考虑,然后引入解决线性回归中会用到的最大似然近似(Maximum Likelihood Appropriation-MLA) 求解模型中的参数,以及梯度 ...

  4. ServiceStack.OrmLite 笔记10-group having 分页orderby等

    group having 分页等 var ev = OrmLiteConfig.DialectProvider.SqlExpression(); group的使用 同sql一样,注意group分组的字 ...

  5. C#中实现多继承的方法

    有一个类叫老虎,还有一个类叫苍蝇.现在新创一个超级老虎类,一种可以飞的老虎,超级老虎由于同时也继承自苍蝇 namespace Interface { //飞的接口 public interface I ...

  6. SVN 的使用

    文件夹上的符号有什么意义?? 黄色感叹号(有冲突):--这是有冲突了,冲突就是说你对某个文件进行了修改,别人也对这个文件进行了修改,别人抢在你提交之前先提交了,这时你再提交就会被提示发生冲突,而不允许 ...

  7. iBATIS sql(XML)中的大于、小于、like等符号写法

    其实就是xml的特殊符号,因为它的配置就是xml,所以可以用下面这种写法转义 <          <     >          >      <>   < ...

  8. 阿里商业评论 | 互联网POI数据及其在营销中的应用

    阿里商业评论 | 互联网POI数据及其在营销中的应用 时间 2014-11-05 10:40:50  阿里研究院 原文  http://www.aliresearch.com/index.php?m- ...

  9. Oracle一列的多行数据拼成一行显示字符

    Oracle一列的多行数据拼成一行显示字符   oracle 提供了两个函数WMSYS.WM_CONCAT 和 ListAgg函数.    www.2cto.com   先介绍:WMSYS.WM_CO ...

  10. JavaWeb学习总结(十五)--过滤器的应用

    一.解决全站字符乱码(post和get中文编码问题) 乱码问题: 获取请求参数中的乱码问题: POST请求:request.setCharacterEncoding("utf-8" ...