Description

Seiji Hayashi had been a professor of the Nisshinkan Samurai School in the domain of Aizu for a long time in the 18th century. In order to reward him for his meritorious career in education, Katanobu Matsudaira, the lord of the domain of Aizu, had decided to grant him a rectangular estate within a large field in the Aizu Basin. Although the size (width and height) of the estate was strictly specified by the lord, he was allowed to choose any location for the estate in the field. Inside the field which had also a rectangular shape, many Japanese persimmon trees, whose fruit was one of the famous products of the Aizu region known as 'Mishirazu Persimmon', were planted. Since persimmon was Hayashi's favorite fruit, he wanted to have as many persimmon trees as possible in the estate given by the lord. 
For example, in Figure 1, the entire field is a rectangular grid whose width and height are 10 and 8 respectively. Each asterisk (*) represents a place of a persimmon tree. If the specified width and height of the estate are 4 and 3 respectively, the area surrounded by the solid line contains the most persimmon trees. Similarly, if the estate's width is 6 and its height is 4, the area surrounded by the dashed line has the most, and if the estate's width and height are 3 and 4 respectively, the area surrounded by the dotted line contains the most persimmon trees. Note that the width and height cannot be swapped; the sizes 4 by 3 and 3 by 4 are different, as shown in Figure 1. 
 
Figure 1: Examples of Rectangular Estates
Your task is to find the estate of a given size (width and height) that contains the largest number of persimmon trees.

Input

The input consists of multiple data sets. Each data set is given in the following format.


W H 
x1 y1 
x2 y2 
... 
xN yN 
S T

N is the number of persimmon trees, which is a positive integer less than 500. W and H are the width and the height of the entire field respectively. You can assume that both W and H are positive integers whose values are less than 100. For each i (1 <= i <= N), xi and yi are coordinates of the i-th persimmon tree in the grid. Note that the origin of each coordinate is 1. You can assume that 1 <= xi <= W and 1 <= yi <= H, and no two trees have the same positions. But you should not assume that the persimmon trees are sorted in some order according to their positions. Lastly, S and T are positive integers of the width and height respectively of the estate given by the lord. You can also assume that 1 <= S <= W and 1 <= T <= H.

The end of the input is indicated by a line that solely contains a zero.

Output

For each data set, you are requested to print one line containing the maximum possible number of persimmon trees that can be included in an estate of the given size.

Sample Input

16
10 8
2 2
2 5
2 7
3 3
3 8
4 2
4 5
4 8
6 4
6 7
7 5
7 8
8 1
8 4
9 6
10 3
4 3
8
6 4
1 2
2 1
2 4
3 4
4 2
5 3
6 1
6 2
3 2
0

Sample Output

4
3

【题意】给出一个n*m的土地,圈一个w*h的小块地,要求有最多的trees;

【思路】枚举所有可能的圈地方式,用二维树状数组算出该圈地得到了多少个*,取最大结果输出

#include<iostream>
#include<stdio.h>
#include<string.h>
using namespace std;
const int N=;
int c[N][N];//二维树状数组
int n,m;
int lowbit(int x)
{
return x&(-x);
}
void update(int x,int y)
{
for(int i=x;i<=n;i+=lowbit(i))
{
for(int j=y;j<=m;j+=lowbit(j))
{
c[i][j]++;
}
}
}
int get_sum(int x,int y)
{
int ans=;
for(int i=x;i>=;i-=lowbit(i))
for(int j=y;j>=;j-=lowbit(j))
{
ans+=c[i][j];
}
return ans;
}
int main()
{
int t;
while(scanf("%d",&t),t)
{
memset(c,,sizeof(c));
scanf("%d%d",&n,&m);
for(int i=;i<t;i++)
{
int x,y;
scanf("%d%d",&x,&y);
update(x,y); }
int w,h;
scanf("%d%d",&w,&h);
int ans=-;
for(int i=w;i<=n;i++)//枚举
{
for(int j=h;j<=m;j++)
{
int tmp=get_sum(i,j)-get_sum(i,j-h)-get_sum(i-w,j)+get_sum(i-w,j-h);//求子矩形中的tree的数量
if(ans<tmp)
ans=tmp;
}
}
printf("%d\n",ans);
}
return ;
}

Get Many Persimmon Trees_枚举&&二维树状数组的更多相关文章

  1. POJ 2029 Get Many Persimmon Trees (二维树状数组)

    Get Many Persimmon Trees Time Limit:1000MS    Memory Limit:30000KB    64bit IO Format:%I64d & %I ...

  2. POJ 2029 Get Many Persimmon Trees 【 二维树状数组 】

    题意:给出一个h*w的矩形,再给出n个坐标,在这n个坐标种树,再给出一个s*t大小的矩形,问在这个s*t的矩形里面最多能够得到多少棵树 二维的树状数组,求最多能够得到的树的时候,因为h,w都不超过50 ...

  3. POJ2029:Get Many Persimmon Trees(二维树状数组)

    Description Seiji Hayashi had been a professor of the Nisshinkan Samurai School in the domain of Aiz ...

  4. POJ 2029 Get Many Persimmon Trees(DP||二维树状数组)

    题目链接 题意 : 给你每个柿子树的位置,给你已知长宽的矩形,让这个矩形包含最多的柿子树.输出数目 思路 :数据不是很大,暴力一下就行,也可以用二维树状数组来做. #include <stdio ...

  5. POJ 2029 Get Many Persimmon Trees (模板题)【二维树状数组】

    <题目链接> 题目大意: 给你一个H*W的矩阵,再告诉你有n个坐标有点,问你一个w*h的小矩阵最多能够包括多少个点. 解题分析:二维树状数组模板题. #include <cstdio ...

  6. hdu5517 二维树状数组

    题意是给了 n个二元组 m个三元组, 二元组可以和三元组 合并生成3元组,合并条件是<a,b> 与<c,d,e>合并成 <a,c,d> 前提是 b==e, 如果存在 ...

  7. POJ 2029 (二维树状数组)题解

    思路: 大力出奇迹,先用二维树状数组存,然后暴力枚举 算某个矩形区域的值的示意图如下,代码在下面慢慢找... 代码: #include<cstdio> #include<map> ...

  8. HDU 5517 【二维树状数组///三维偏序问题】

    题目链接:[http://acm.split.hdu.edu.cn/showproblem.php?pid=5517] 题意:定义multi_set A<a , d>,B<c , d ...

  9. 【二维树状数组】【CF10D】 LCIS

    传送门 Description 给你两个串,求他们的最长公共上升子序列 Input 第一行是第一个串的长度\(n\) 第二行\(n\)个数代表第一个串 第三行是第二个串的长度\(m\) 第四行\(m\ ...

随机推荐

  1. MATLAB 矩阵转化为灰度图

    A=[ 1.00 0.96 0.98 0.88 0.94 0.61 0.96 0.80 0.98 0.89 0.96 1.00 0.94 0.90 0.95 0.71 0.96 0.83 0.90 0 ...

  2. 建库和表的脚本.sql

    1.一直都记不太清楚,需要新建一个数据库和表的脚本是怎样的,恰巧今天翻到了,特地记录下来,希望以后用的时候记住吧! create database testdb00; use testdb00; cr ...

  3. jQuery插件之ajaxFileUpload 2

      ajaxFileUpload.js 很多同名的,因为做出来一个很容易. 我用的是这个:https://github.com/carlcarl/AjaxFileUpload 下载地址在这里:http ...

  4. js中文正则

    正则表达式用于字符串处理.表单验证等场合,实用高效.现将一些常用的表达式收集于此,以备不时之需. 匹配中文字符的正则表达式: [\u4e00-\u9fa5]评注:匹配中文还真是个头疼的事,有了这个表达 ...

  5. 注册并启动 Reporting Services SharePoint 服务

    在安装 SharePoint 之前已安装 Reporting Services SharePoint 模式.所以Reporting Services SharePoint 是不能正常使用的. 安装完S ...

  6. BroadcastReceiver的简介

    BroadcastReceiver本质上属于一个监听器,因此实现BroadcastReceiver的方法只要重写BroadcastReceiver的onReceive(Context  context ...

  7. sql类型转换

    CAST 和 CONVERT 将某种数据类型的表达式显式转换为另一种数据类型.CAST 和 CONVERT 提供相似的功能. 语法 使用 CAST: CAST ( expression AS data ...

  8. DataGridView绑定数据库,取得的数据插入到DataGridView指定列(一)

    实现: 点击button1,从数据库中获得数据,指定数据库的某列数据插入到DataGridView指定列 一.双击button1进入事件代码 private void button1_Click(ob ...

  9. php变量的判空和类型判断

    (1)var_dump(); 判断一个变量是否已经声明并且赋值,并且打印类型和值 <?php $a; var_dump($a);//输出null <?php var_dump($a);// ...

  10. 【转发】Linux下如何查看当前支持的文件系统及各分区的文件系统类型

    Linux下查看当前内核系统支持的文件系统: 一般都在 /lib/modules/kernl-version/kernel/fs/ 目录下包含了当前内核版本支持的文件系统: ls /lib/modul ...