[图论]Floyd 算法小结
Floyd 算法小结
By Wine93 2013.11
1. Floyd算法简介
Floyd算法利用动态规划思想可以求出任意2点间的最短路径,时间复杂度为O(n^3),对于稠密图, 效率要高于执行|V|次Dijkstra算法.
核心代码如下:
for(k=1;k<=n;k++)
for(i=1;i<=n;i++)
for(j=1;j<=n;j++)
dis[i][j]=min(dis[i][j],dis[i][k]+dis[k][j]);
相关应用 : 有向图:①求任意2点间最短路径 ②求最小环(可判断负圈,检查dis[i][i]) ③求传递闭包
无向图:(无负权边): ①求任意2点间最短路径 ②求最小环
注意:对于有负权边的无向图,会出现很多意想不到的错误,请谨慎使用floyd。
2. 个人心得
对于floyd,我认为最重要的是理解k循环这层,每枚举一个k,代表下面代表的点对(i,j)之间的 最短路有可能会通过k这点而变小,也就是说在i到j的这条简单路径上插上k这个点,有可能会使路径长度变小。还有就是floyd求出来的最短路径肯定是简单路径(无向图)
关于可Floyd解的题其顶点数都比较小,根据这点会给我们一点暗示.
如果要输出floyd所求相关路径,我们可以记录mid[i][j](表示i到j这条路径中插入的点k),这样通过不断递归,就可以求出整条路径
3. Floyd算法的应用举例
(1) 求无向图最小环
HDU 1599 find the mincost route
# include<cstdio>
# include<cstring>
# include<algorithm>
using namespace std; # define INF <<
# define N int mat[N][N],dis[N][N];
int minloop; void floyd(int n)
{
int i,j,k;
for(k=;k<=n;k++)
{
for(i=;i<=n;i++)
for(j=;j<=n;j++)
if(i!=j&&i!=k&&j!=k&&dis[i][j]+mat[j][k]+mat[k][i]<minloop)
minloop=dis[i][j]+mat[j][k]+mat[k][i];
for(i=;i<=n;i++)
for(j=;j<=n;j++)
dis[i][j]=min(dis[i][j],dis[i][k]+dis[k][j]);
}
} void init(int n)
{
int i,j;
minloop=INF;
for(i=;i<=n;i++)
for(j=;j<=n;j++)
mat[i][j]=mat[j][i]=dis[i][j]=dis[j][i]=INF;
} int main()
{
// freopen("in.txt","r",stdin);
int i,n,m,u,v,w;
while(scanf("%d%d",&n,&m)!=EOF)
{
init(n);
for(i=;i<=m;i++)
{
scanf("%d%d%d",&u,&v,&w);
if(w<mat[u][v])
mat[u][v]=mat[v][u]=dis[u][v]=dis[v][u]=w;
}
floyd(n);
if(minloop==INF) printf("It's impossible.\n");
else printf("%d\n",minloop);
}
return ;
}
HDU 1599
POJ 1734 Sightseeing trip(需输出最小环)
# include<cstdio>
# include<cstring>
# include<vector>
# include<algorithm>
using namespace std; # define pb push_back
# define INF <<
# define N int mat[N][N],dis[N][N],mid[N][N],minloop;
vector<int> vec; void dfs(int l,int r)
{
if(mid[l][r]==-) return;
dfs(l,mid[l][r]);
vec.pb(mid[l][r]);
dfs(mid[l][r],r);
} void floyd(int n)
{
int i,j,k;
for(k=;k<=n;k++)
{
for(i=;i<k;i++)
for(j=i+;j<k;j++)
{
if(dis[i][j]+mat[j][k]+mat[k][i]<minloop)
{
minloop=dis[i][j]+mat[j][k]+mat[k][i];
vec.clear();
vec.pb(i);
dfs(i,j);
vec.pb(j);
vec.pb(k);
}
}
for(i=;i<=n;i++)
for(j=;j<=n;j++)
{
if(dis[i][k]+dis[k][j]<dis[i][j])
{
dis[i][j]=dis[i][k]+dis[k][j];
mid[i][j]=k;
}
}
}
} void init(int n)
{
int i,j;
minloop=INF;
for(i=;i<=n;i++)
for(j=;j<=n;j++)
mat[i][j]=dis[i][j]=INF,mid[i][j]=-;
vec.clear();
} int main()
{
//freopen("in.txt","r",stdin);
int i,j,n,m,u,v,w;
while(scanf("%d%d",&n,&m)!=EOF)
{
init(n);
for(i=;i<=m;i++)
{
scanf("%d%d%d",&u,&v,&w);
if(w<mat[u][v])
dis[u][v]=dis[v][u]=mat[u][v]=mat[v][u]=w;
}
floyd(n);
if(minloop==INF)
{
printf("No solution.\n");
continue;
}
printf("%d",vec[]);
for(i=;i<vec.size();i++)
printf(" %d",vec[i]);
printf("\n");
}
return ;
}
POJ 1734
相关证明理解请参考下面博客,讲解的非常好:
http://www.kaixinwenda.com/article-aclion-8074848.html
(2)判断有向图是否有正环
POJ 2240 Arbitrage
# include<cstdio>
# include<cstring>
# include<string>
# include<map>
# include<algorithm>
using namespace std; # define N
double dis[N][N]; void floyd(int n)
{
int i,j,k;
for(k=;k<=n;k++)
for(i=;i<=n;i++)
for(j=;j<=n;j++)
dis[i][j]=max(dis[i][j],dis[i][k]*dis[k][j]);
} void init(int n)
{
int i,j;
for(i=;i<=n;i++)
for(j=;j<=n;j++)
dis[i][j]=(i==j)?:;
} int main()
{
// freopen("in.txt","r",stdin);
map<string,int> Hash;
int i,n,m,num,flag,cas=,u,v;
char s1[N],s2[N];
double d;
while(scanf("%d",&n)!=EOF&&n)
{
Hash.clear();
flag=num=;
init(n);
for(i=;i<=n;i++)
{
scanf("%s",s1);
Hash[s1]=++num;
}
scanf("%d",&m);
for(i=;i<=m;i++)
{
scanf("%s %lf %s",s1,&d,s2);
u=Hash[s1];
v=Hash[s2];
dis[u][v]=max(dis[u][v],d);
}
floyd(n);
printf("Case %d: ",cas++);
for(i=;i<=n;i++)
if(dis[i][i]>1.0)
{
flag=;
break;
}
if(flag) printf("Yes\n");
else printf("No\n");
}
return ;
}
POJ 2240
(3)传递闭包
POJ 3660 Cow Contest
# include<cstdio>
# include<cstring>
# include<algorithm>
using namespace std; # define N
int f[N][N],beat[N],win[N]; void floyd(int n)
{
int i,j,k;
for(k=;k<=n;k++)
for(i=;i<=n;i++)
for(j=;j<=n;j++)
f[i][j]|=(f[i][k]&&f[k][j]);
} int main()
{
int i,j,n,m,u,v,ans;
while(scanf("%d%d",&n,&m)!=EOF)
{
ans=;
memset(beat,,sizeof(beat));
memset(win,,sizeof(win));
memset(f,,sizeof(f));
for(i=;i<=m;i++)
{
scanf("%d%d",&u,&v);
f[u][v]=;
}
floyd(n);
for(i=;i<=n;i++)
{
for(j=;j<=n;j++)
if(f[j][i]) //j beat i
{
win[j]++;
beat[i]++;
}
}
for(i=;i<=n;i++)
if(win[i]+beat[i]==n-)
ans++;
printf("%d\n",ans);
}
return ;
}
POJ 3660
(4)好题推荐(独立完成)
HDU 3631 Shortest Path //深入理解floyd
# include<cstdio>
# include<cstring>
# include<algorithm>
using namespace std; # define INF <<
# define N int n,m,q;
int dis[N][N];
int mark[N]; void floyd(int k)
{
int i,j;
for(i=;i<n;i++)
for(j=;j<n;j++)
dis[i][j]=min(dis[i][j],dis[i][k]+dis[k][j]);
} void init(int n)
{
int i,j;
memset(mark,,sizeof(mark));
for(i=;i<n;i++)
for(j=;j<n;j++)
dis[i][j]=(i==j)?:INF;
} int main()
{
//freopen("in.txt","r",stdin);
int i,j,u,v,w,op,cas=;
while(scanf("%d%d%d",&n,&m,&q)!=EOF&&(n+m+q))
{
init(n);
for(i=;i<=m;i++)
{
scanf("%d%d%d",&u,&v,&w);
dis[u][v]=min(dis[u][v],w);
}
if(cas>) printf("\n");
printf("Case %d:\n",cas++);
for(i=;i<=q;i++)
{
scanf("%d",&op);
if(op==)
{
scanf("%d",&u);
if(mark[u])
printf("ERROR! At point %d\n",u);
else
{
mark[u]=;
floyd(u);
}
}
else
{
scanf("%d%d",&u,&v);
if(!mark[u]||!mark[v])
printf("ERROR! At path %d to %d\n",u,v);
else if(dis[u][v]==INF)
printf("No such path\n");
else
printf("%d\n",dis[u][v]);
}
}
}
return ;
}
HDU 3631
HDU 4034 Graph //深入理解floyd ,思维锻炼
# include<cstdio>
# include<cstring>
# include<algorithm>
using namespace std; # define N
int dis[N][N];
int vis[N][N]; int floyd(int n)
{
int i,j,k,ans=n*(n-);
memset(vis,,sizeof(vis));
for(k=;k<=n;k++)
for(i=;i<=n;i++)
for(j=;j<=n;j++)
{
if(dis[i][k]+dis[k][j]<dis[i][j])
return -;
if(!vis[i][j]&&i!=k&&j!=k&&i!=j&&dis[i][k]+dis[k][j]==dis[i][j])
{
ans--;
vis[i][j]=;
}
}
return ans;
} int main()
{
//freopen("in.txt","r",stdin);
int cas,T,i,j,n,ans;
scanf("%d",&T);
for(cas=;cas<=T;cas++)
{
scanf("%d",&n);
for(i=;i<=n;i++)
for(j=;j<=n;j++)
scanf("%d",&dis[i][j]);
printf("Case %d: ",cas);
ans=floyd(n);
if(ans==-)
printf("impossible\n");
else
printf("%d\n",ans);
}
return ;
}
HDU 4034
4. 个人总结
Floyd算法有很多其他的应用,需要不断的积累,但是我相信只要能理解好floyd的DP思想(每个k点插入或者不插入相关路径),很多问题多能迎刃而解.
附录:关于Floyd判断环的可行性

注:该附录未经严格验证,请读者认真思考
[图论]Floyd 算法小结的更多相关文章
- floyd算法小结
floyd算法是被大家熟知的最短路算法之一,利用动态规划的思想,f[i][j]记录i到j之间的最短距离,时间复杂度为O(n^3),虽然时间复杂度较高,但是由于可以处理其他相似的问题,有着广泛的应用,这 ...
- [图论]Dijkstra 算法小结
Dijkstra 算法小结 By Wine93 2013.11 1. Dijkstra 算法相关介绍 算法阐述:Dijkstra是解决单源最短路径的算法,它可以在O(n^2)内计算出源点(s)到图中 ...
- 图论·Floyd算法·HDU2544&1874 (伪)2066
在看到1874的题时,第一反应是用上一篇的并查集方法,后来查了一下是要用Floyd做,所以就去查Floyd算法的资料. 即插点法,是一种用于寻找给定的加权图中顶点间最短路径的算法. 核心代码: ma ...
- 图论——Floyd算法拓展及其动规本质
一.Floyd算法本质 首先,关于Floyd算法: Floyd-Warshall算法是一种在具有正或负边缘权重(但没有负周期)的加权图中找到最短路径的算法.算法的单个执行将找到所有顶点对之间的最短路径 ...
- 【uva 10048】Audiophobia(图论--Floyd算法)
题意:有一个N点M边的无向带权图,边权表示路径上的噪声值.有Q个询问,输出 x,y 两点间的最大噪声值最小的路径的该值.(N≤100,M≤1000,Q≤10000) 解法:N值小,且问多对点之间的路径 ...
- 图论(floyd算法):NOI2007 社交网络
[NOI2007] 社交网络 ★★ 输入文件:network1.in 输出文件:network1.out 简单对比 时间限制:1 s 内存限制:128 MB [问题描述] 在社交网络( ...
- 图论之最短路径floyd算法
Floyd算法是图论中经典的多源最短路径算法,即求任意两点之间的最短路径. 它可采用动态规划思想,因为它满足最优子结构性质,即最短路径序列的子序列也是最短路径. 举例说明最优子结构性质,上图中1号到5 ...
- 图论篇3——最短路径 Dijkstra算法、Floyd算法
最短路径 问题背景:地图上有很多个城市,已知各城市之间距离(或者是所需时间,后面都用距离了),一般问题无外乎就是以下几个: 从某城市到其余所有城市的最短距离[单源最短路径] 所有城市之间相互的最短距离 ...
- 图论算法(二)最短路算法:Floyd算法!
最短路算法(一) 最短路算法有三种形态:Floyd算法,Shortset Path Fast Algorithm(SPFA)算法,Dijkstra算法. 我个人打算分三次把这三个算法介绍完. (毕竟写 ...
随机推荐
- ASP.NET服务器控件数据绑定总结
using System; using System.Collections.Generic; using System.Text; using System.Web.UI.WebControls;/ ...
- Java 集合系列 01 总体框架
java 集合系列目录: Java 集合系列 01 总体框架 Java 集合系列 02 Collection架构 Java 集合系列 03 ArrayList详细介绍(源码解析)和使用示例 Java ...
- javascript 数组操作 转
javascript之数组操作 1.数组的创建 var arrayObj = new Array(); //创建一个数组 var arrayObj = new Array([size]); //创建一 ...
- php安装出现的部分错误
在CentOS编译PHP5的时候有时会遇到以下的一些错误信息,基本上都可以通过yum安装相应的库来解决.以下是具体的一些解决办法: checking for BZip2 support… yes ch ...
- 配置coffeeScript
1.安装好node.js后 在系统环境变量自动会设置好: 我安装在D:\Program Files文件夹中 也安装好了npm(node packges manager) 2.系统会自动配置np ...
- InLineHookSSDT
//当Ring3调用OpenProcess //1从自己的模块(.exe)的导入表中取值 //2Ntdll.dll模块的导出表中执行ZwOpenProcess(取索引 进入Ring0层) //3进入R ...
- 开始→运行(cmd)命令大全
gpedit.msc-----组策略 sndrec32-------录音机 Nslookup-------IP地址侦测器 explorer-------打开资源管理器 logoff---------注 ...
- tomcat http 文件下载
tomcat作为http的下载服务器,网上有很多办法 但我认为最简单的是: 1.直接把文件放在 tomcat6/webapps/ROOT 目录下, 2.然后在网址中访问: http://120.194 ...
- 蓝桥杯 algo——6 安慰奶牛 (最小生成树)
问题描述 Farmer John变得非常懒,他不想再继续维护供奶牛之间供通行的道路.道路被用来连接N个牧场,牧场被连续地编号为1到N.每一个牧场都是一个奶牛的家.FJ计 划除去P条道路中尽可能多的道路 ...
- Unity游戏数据用Json保存
(一)关于路径 unity有几个关键的路径 (1).Application.dataPath 只读路径,就是工作目录的Assets路径 (2).Application.streamingAssetsP ...