算法概述

CART(Classification And Regression Tree)算法是一种决策树分类方法。

它采用一种二分递归分割的技术,分割方法采用基于最小距离的基尼指数估计函数,将当前的样本集分为两个子样本集,使得生成的的每个非叶子节点都有两个分支。因此,CART算法生成的决策树是结构简洁的二叉树。

叶子节点不是一个类别,而是一个固定的分数。

分类树

如果目标变量是离散变量,则是classfication Tree。

分类树是使用树结构算法将数据分成离散类的方法。

回归树

如果目标是连续变量,则是Regression Tree。

CART树是二叉树,不像多叉树那样形成过多的数据碎片。

分类树两个关键点

(1)将训练样本进行递归地划分自变量空间进行建树

(2)用验证数据进行剪枝。

a.对于离散变量X(x1…xn)

  分别取X变量各值的不同组合,将其分到树的左枝或右枝,并对不同组合而产生的树,进行评判,找出最佳组合。如果只有两个取值,好办,直接根据这两个值就可以划分树。取值多于两个的情况就复杂一些了,如变量年纪,其值有“少年”、“中年”、“老年”,则分别生产{少年,中年}和{老年},{上年、老年}和{中年},{中年,老年}和{少年},这三种组合,最后评判对目标区分最佳的组合。因为CART二分的特性,当训练数据具有两个以上的类别,CART需考虑将目标类别合并成两个超类别,这个过程称为双化。这里可以说一个公式,n个属性,可以分出(2^n-2)/2种情况。

b.对于连续变量X(x1…xn)

首先将值排序,分别取其两相邻值的平均值点作为分隔点,将树一分成左枝和右枝,不断扫描,进而判断最佳分割点。特征值大于分裂值就走左子树,或者就走右子树。

这里有一个问题,这次选中的分裂属性在下次还可以被选择吗?对于离散变量XD,如果XD只有两种取值,那么在这一次分裂中,根据XD分裂后,左子树中的subDataset中每个数据的XD属性一样,右子树中的subDataset中每个数据的XD属性也一样,所以在这个节点以后,XD都不起作用了,就不用考虑XD了。XD取3种,4种。。。的情况大家自己想想,不难想明白。至于连续变量XC,离散化后相当于一个可以取n个值的离散变量,按刚刚离散变量的情况分析。除非XC的取值都一样,否则这次用了XC作为分裂属性,下次还要考虑XC。

变量和最佳切分点选择原则

  树的生长,总的原则是,让枝比树更纯,而度量原则是根据不纯对指标来衡量,对于分类树,则用GINI指标、Twoing指标、Order Twoing等;如果是回归树则用,最小平方残差、最小绝对残差等指标衡量。

其思想是,让组内方差最小,对应组间方差最大,这样两组,也即树分裂的左枝和右枝差异化最大

通过以上不纯度指标,分别计算每个变量的各种切分/组合情况,找出该变量的最佳值组合/切分点;再比较各个变量的最佳值组合/切分点,最终找出最佳变量和该变量的最佳值组合/切分点

整个树的生长是一个递归过程,直到终止条件:

终止条件

(1)节点是纯结点,即所有的记录的目标变量值相同

(2)树的深度达到了预先指定的最大值

(3)混杂度的最大下降值小于一个预先指定的值

(4)节点的记录量小于预先指定的最小节点记录量

(5)一个节点中的所有记录其预测变量值相同

直观的情况,当节点包含的数据记录都属于同一个类别时就可以终止分裂了。这只是一个特例,更一般的情况我们计算χ2值来判断分类条件和类别的相关程度,当χ2很小时说明分类条件和类别是独立的,即按照该分类条件进行分类是没有道理的,此时节点停止分裂。注意这里的“分类条件”是指按照GINI_Gain最小原则得到的“分类条件”。

终止条件(3)混杂度的最大下降值小于一个预先指定的值,该枝的分化即停止。所有枝节的分化都停止后,树形模型即成。其实你也可以不使用这个终止条件,让树生长到最大,因为CART有剪枝算法。

这里面误分类成本和先验概率是需要提前设定好的参数。这里为node标定label如果考虑一些unbalanced data,比如训练样本里有100个正样本,只有1个负样本,这样的数据就是unbalanced,就不能简单的majority归类了。上面的这个mark label的方法对不均衡数据就有一定的鲁棒性。

要注意对于每一个树结点,不管是否叶子结点,该node都要标上label,因为后面剪枝时非叶节点可能变为叶节点。

树生长完之后就是剪枝,剪枝非常重要。剪枝目的是避免决策树过拟合(Overfitting)样本。在一般的数据集中,过拟合的决策树的错误率比经过简化的决策树的错误率要高。

CART树的更多相关文章

  1. 决策树--CART树详解

    1.CART简介 CART是一棵二叉树,每一次分裂会产生两个子节点.CART树分为分类树和回归树. 分类树主要针对目标标量为分类变量,比如预测一个动物是否是哺乳动物. 回归树针对目标变量为连续值的情况 ...

  2. 机器学习中的那些树——决策树(三、CART 树)

    前言 距上篇文章已经过了9个月 orz..趁着期末复习,把博客补一补.. 在前面的文章中介绍了决策树的 ID3,C4.5 算法.我们知道了 ID3 算法是基于各节点的信息增益的大小 \(\operat ...

  3. CART树 python小样例

    决策树不断将数据切分成小数据集,直到所有目标变量完全相同,或者数据不能再切分为止,决策时是一种贪心算法,它要在给定的时间内做出最佳选择,但并不关心能否达到最优 树回归 优点:可以对复杂和非线性的数据建 ...

  4. cart树剪枝

    当前子树的损失函数: $C_a(T) = C(T) + a|T|$, 其中$C(T)$为对训练数据的预测误差,$|T|$为树的叶子结点数目,反映模型的复杂度.对固定的$a$,一定存在使损失函数$C_a ...

  5. CART:分类与回归树

    起源:决策树切分数据集 决策树每次决策时,按照一定规则切分数据集,并将切分后的小数据集递归处理.这样的处理方式给了线性回归处理非线性数据一个启发. 能不能先将类似特征的数据切成一小部分,再将这一小部分 ...

  6. CART分类与回归树 学习笔记

    CART:Classification and regression tree,分类与回归树.(是二叉树) CART是决策树的一种,主要由特征选择,树的生成和剪枝三部分组成.它主要用来处理分类和回归问 ...

  7. 决策树算法原理(CART分类树)

    决策树算法原理(ID3,C4.5) CART回归树 决策树的剪枝 在决策树算法原理(ID3,C4.5)中,提到C4.5的不足,比如模型是用较为复杂的熵来度量,使用了相对较为复杂的多叉树,只能处理分类不 ...

  8. 大白话5分钟带你走进人工智能-第二十六节决策树系列之Cart回归树及其参数(5)

                                                    第二十六节决策树系列之Cart回归树及其参数(5) 上一节我们讲了不同的决策树对应的计算纯度的计算方法, ...

  9. 机器学习之分类回归树(python实现CART)

    之前有文章介绍过决策树(ID3).简单回顾一下:ID3每次选取最佳特征来分割数据,这个最佳特征的判断原则是通过信息增益来实现的.按照某种特征切分数据后,该特征在以后切分数据集时就不再使用,因此存在切分 ...

随机推荐

  1. hdu5883 The Best Path 2016-09-21 21:31 92人阅读 评论(0) 收藏

    The Best Path Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others) To ...

  2. Checkpoint--相关问题

    Checkpoint是实例级别还是数据库级别? 答:数据库级别,在SQL Server关闭时,会对所有数据库逐一提交checkpoint 测试代码 USE DB0002 GO CHECKPOINT G ...

  3. Asp.net MVC5 返回json数据忽略序列化属性

    在属性上添加 [ScriptIgnore] 特性,命名空间是System.Web.Script.Serialization

  4. C#文件监控对象FileSystemWatcher实例,通过监控文件创建、修改、删除、重命名对服务器数据进行实时备份

    先上图,简单的windorm界面:此为最初的版本,后续会增加监听多个源目录的功能.log功能.进度条展示功能等. 1.初始化监听 /// <summary> /// 初始化监听 /// & ...

  5. 第五章 ReentrantLock源码解析1--获得非公平锁与公平锁lock()

    最常用的方式: int a = 12; //注意:通常情况下,这个会设置成一个类变量,比如说Segement中的段锁与copyOnWriteArrayList中的全局锁 final Reentrant ...

  6. Day 12 作业.(完成)

    1,将装饰器的所有知识点总结完成,将这几天的作业再整理一遍,还是不会的,就抄代码,一遍不行就三遍,直到所有知识点,所有题都整明白. 2,有时间就画流程图,梳理知识点. 3,上面两项完成的写以下作业. ...

  7. python寻找list中最大值、最小值并返回其所在位置

    c = [-10,-5,0,5,3,10,15,-20,25]   print c.index(min(c))  # 返回最小值 print c.index(max(c)) # 返回最大值  

  8. thinkphp5的mkdir() Permission denied问题

    最近一直在用tp5写项目,在此遇到的问题也比较多.今天来谈谈“mkdir() Permission denied”错误. 你如果不仅仅写代码,还得部署到线上,那么这个tp5的这个错误,你有很大概率会遇 ...

  9. FunDA(15)- 示范:任务并行运算 - user task parallel execution

    FunDA的并行运算施用就是对用户自定义函数的并行运算.原理上就是把一个输入流截分成多个输入流并行地输入到一个自定义函数的多个运行实例.这些函数运行实例同时在各自不同的线程里同步运算直至耗尽所有输入. ...

  10. elasticsearch 分片(Shards)的理解

    分片重要性 Es中所有数据均衡的存储在集群中各个节点的分片中,会影响ES的性能.安全和稳定性, 所以很有必要了解一下它. 分片是什么? 简单来讲就是咱们在ES中所有数据的文件块,也是数据的最小单元块, ...