Shoemaker's Problem

Shoemaker has N jobs (orders from customers) which he must make. Shoemaker can work on only one job in each day. For each ith job, it is known the integer Ti (1<=Ti<=1000), the time in days it takes the shoemaker to finish
the job. For each day of delay before starting to work for the ith job, shoemaker must pay a fine of Si (1<=Si<=10000) cents. Your task is to help the shoemaker, writing a programm to find the sequence of jobs with minimal
total fine.

The Input

The input begins with a single positive integer on a line by itself indicating the number of the cases following, each of them as described below. This line is followed by a blank line, and there is also a blank line between two consecutive inputs.

First line of input contains an integer N (1<=N<=1000). The next N lines each contain two numbers: the time and fine of each task in order.

The Output

For each test case, the output must follow the description below. The outputs of two consecutive cases will be separated by a blank line.

You programm should print the sequence of jobs with minimal fine. Each job should be represented by its number in input. All integers should be placed on only one output line and separated by one space. If multiple solutions are possible, print the first
lexicographically.

Sample Input

1

4
3 4
1 1000
2 2
5 5

Sample Output

2 1 3 4

题意:一个鞋匠接到非常多订单。可是,每一个客户都觉得自己的订单应该被立即处理。因此,对于第i个订单。在開始处理这个订单之前,每天都要付罚金Si (1<=Si≤<=1000)。而他一天仅仅能处理一个订单。并且一个订单可能须要非常多天才干完毕。对于第i个订单。整数Ti (1<=Ti<=1000)代表处理完毕这个订单所须要的天数。

求所付罚金最少的订单处理顺序。

分析:贪心解决。对每一个订单 罚金/天数 从大到小排序。结果一样按序号排序(保证字典序最小)。

证明:假设x和y为排好的顺序中相邻的两个订单,因为x、y之后的订单顺序是固定的。所以不管是排成xy还是排成yx,对后面的罚金没有影响。罚金区别在于是排成xy还是yx。

假设是xy,则罚金为Tx*Sy;假设是yx,则罚金是Ty*Sx。

假设Tx*Sy<Ty*Sx,就排成xy;否则排成yx。

所以这样的贪心策略是正确的。

#include<cstdio>
#include<algorithm>
using namespace std; struct shoe {
int id;
int time;
int fine;
} a[1005]; bool comp(shoe x, shoe y) { //用乘法比較。避免相除以后浮点数产生误差
if(x.fine * y.time != x.time * y.fine)
return x.fine * y.time > x.time * y.fine;
return x.id < y.id;
} int main()
{
int T, n, i;
scanf("%d",&T);
while(T--) {
scanf("%d",&n);
for(i = 0; i < n; i++) {
scanf("%d%d",&a[i].time, &a[i].fine);
a[i].id = i + 1;
}
sort(a, a+n, comp);
for(i = 0; i < n - 1; i++)
printf("%d ", a[i].id);
printf("%d\n", a[n-1].id);
if(T > 0) printf("\n");
}
return 0;
}

UVA 10026 Shoemaker&#39;s Problem的更多相关文章

  1. UVA 10026 Shoemaker's Problem 鞋匠的难题 贪心+排序

    题意:鞋匠一口气接到了不少生意,但是做鞋需要时间,鞋匠只能一双一双地做,根据协议每笔生意如果拖延了要罚钱. 给出每笔生意需要的天数和每天的罚钱数,求出最小罚钱的排列顺序. 只要按罚款/天数去从大到小排 ...

  2. uva 10026 Shoemaker's Problem(排序)

    题目连接:10026 Shoemaker's Problem 题目大意:有一个鞋匠接了n双要修的鞋子, 修每双鞋需要d天,每推迟一天修将亏损val元,问按什么样的顺序修鞋可以保证损失最少,如果有多种情 ...

  3. uva 10026 Shoemaker's Problem

    http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...

  4. (贪心5.2.1)UVA 10026 Shoemaker's Problem(利用数据有序化来进行贪心选择)

    /* * UVA_10026.cpp * * Created on: 2013年10月10日 * Author: Administrator */ #include <iostream> ...

  5. uva 10026 Shoemaker's Problem _贪心

    题意:鞋匠现在有n个工作要做,每个工作要x天,没延迟一天需要付款y,鞋匠每天只能做一个工作,问使得鞋匠最少赔款的工作顺序. 思路:工作和工作之间排序,如果a.value*b.day>b.valu ...

  6. programming-challenges Shoemaker&#39;s Problem (110405) 题解

    Greedy. 证明: Let's say we have job 1, 2, ..., n, and they have time and fine as t1, f1, t2, f2, ..., ...

  7. UVA 10245 The Closest Pair Problem 最近点问题 分治算法

    题意,给出n个点的坐标,找出两点间最近的距离,如果小于10000就输出INFINITY. 纯暴力是会超时的,所以得另辟蹊径,用分治算法. 递归思路将点按坐标排序后,分成两块处理,最近的距离不是在两块中 ...

  8. uva 10026 Problem C: Edit Step Ladders

    http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...

  9. UVA - 10239 The Book-shelver&#39;s Problem

    Description Problem D The Book-shelver's Problem Input: standard input Output: standard output Time ...

随机推荐

  1. Wpf使用Winform控件后Wpf元素被Winform控件遮盖问题的解决

    有人会说不建议Wpf中使用Winform控件,有人会说建议使用Winform控件在Wpf下的替代方案,然而在实际工作中由于项目的特殊需求,考虑到时间.成本等因素,往往难免会碰到在WPF中使用Winfr ...

  2. Python djangorestframework安装库报错SSL: CERTIFICATE_VERIFY_FAILED

    Python djangorestframework 安装库报错SSL: CERTIFICATE_VERIFY_FAILED 问题描述 使用pip按照virtualenv报错,如下: pip inst ...

  3. windows svn post-commit 报错解决 error resolving case

    在svn仓库目录下有个hooks目录,下面建一个 post-commit.cmd 文件,有代码提交到仓库,自动checkout到指定目录.   @echo onSET REPOS=%1SET USER ...

  4. hdoj2544 最短路(Dijkstra || Floyd || SPFA)

    题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=2544 思路 最短路算法模板题,求解使用的Dijkstra算法.Floyd算法.SPFA算法可以当做求解 ...

  5. 构建第一个Spring Boot项目

    1.启动IntelliJ IDEA,点击"Create New Project"  2.选择"Spring initializr",设定SDK及Spring ...

  6. UIView中常见的方法汇总

    addSubview: 添加一个子视图到接收者并让它在最上面显示出来. - (void)addSubview:(UIView *)view  总结:这个方法同样设置了接收者为下一个视图响应对象.接收者 ...

  7. 《Android源码设计模式》----面向对象六大原则

    1.单一职责原则 Single Respoonsibility Principle(SRP) --封装 2.开闭原则 Open Close Principle(OCP)--对扩展开放,对修改封闭 3. ...

  8. modCount干嘛的

    在ArrayList.LinkedList.HashMap等等的内部增删改中我们总能看到modCount的身影,modCount字面意思就是修改次数,但为什么要记录modCount的修改次数呢? 大家 ...

  9. MSTP多生成树的配置

    STP的不足 STP协议虽然能够解决环路问题,但是由于网络拓扑收敛较慢,影响了用户通信质量 而且如果网络中的拓扑结构频繁变化,网络也会随之频繁失去连通性,从而导致用户通信频繁中断 RSTP对STP的改 ...

  10. python io 模块之 open() 方法(好久没写博客了)

    io.open(file, mode='r', buffering=-1, encoding=None, errors=None, newline=None, closefd=True),打开file ...