python opencv3 FLANN单应性匹配
git:https://github.com/linyi0604/Computer-Vision

匹配准确率非常高。
单应性指的是图像在投影发生了 畸变后仍然能够有较高的检测和匹配准确率
# coding:utf-8 """
单应性匹配:
两幅图像中的一幅 出现投影畸变的时候,他们还能彼此匹配
""" import cv2
import numpy as np
# 最小匹配数量设为10个, 大于这个数量从中筛选出10个最好的
MIN_MATCH_COUNT = 10 # 读入两幅图片 图片中有相同部分
img1 = cv2.imread("../data/logo1.png", cv2.IMREAD_GRAYSCALE)
img2 = cv2.imread("../data/album1.png", cv2.IMREAD_GRAYSCALE) # 获取sift特征检测器
sift = cv2.xfeatures2d.SIFT_create()
# 检测关键点 计算描述符
kp1, des1 = sift.detectAndCompute(img1, None)
kp2, des2 = sift.detectAndCompute(img2, None) # kdtree建立索引方式的常量参数
FLANN_INDEX_KDTREE = 0
index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5)
search_params = dict(checks=50) # checks指定索引树要被遍历的次数
flann = cv2.FlannBasedMatcher(index_params, search_params)
# 进行匹配搜索
matches = flann.knnMatch(des1, des2, k=2) # 寻找距离近的放入good列表
good = []
for m, n in matches:
if m.distance < 0.7 * n.distance:
good.append(m) # 如果足够多 就筛选
if len(good) > MIN_MATCH_COUNT:
# 通过距离近的描述符 找到两幅图片的关键点
src_pts = np.float32([kp1[m.queryIdx].pt for m in good]).reshape(-1, 1, 2)
dst_pts = np.float32([kp2[m.trainIdx].pt for m in good]).reshape(-1, 1, 2) # 单应性匹配图关键点匹配线。。不懂啥意思
M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0)
matchesMask = mask.ravel().tolist() h, w = img1.shape # 计算第二张图相对于第一张图的畸变
pts = np.float32([[0, 0], [0, h-1], [w-1, 0]]).reshape(-1, 1, 2)
dst = cv2.perspectiveTransform(pts, M)
img2 = cv2.polylines(img2, [np.int32(dst)], True, 255, 3, cv2.LINE_AA)
else:
matchesMask = None draw_params = dict(
matchColor=(0, 255, 0),
singlePointColor=None,
matchesMask=matchesMask,
flags=2
) img3 = cv2.drawMatches(img1, kp1, img2, kp2, good, None, **draw_params)
cv2.imshow("", img3)
cv2.waitKey()
python opencv3 FLANN单应性匹配的更多相关文章
- OpenCV仿射变换+投射变换+单应性矩阵
本来想用单应性求解小规模运动的物体的位移,但是后来发现即使是很微小的位移也会带来超级大的误差甚至错误求解,看起来这个方法各种行不通,还是要匹配知道深度了以后才能从三维仿射变换来入手了,纠结~ esti ...
- 机器学习进阶-案例实战-图像全景拼接-图像全景拼接(RANSCA) 1.sift.detectAndComputer(获得sift图像关键点) 2.cv2.findHomography(计算单应性矩阵H) 3.cv2.warpPerspective(获得单应性变化后的图像) 4.cv2.line(对关键点位置进行连线画图)
1. sift.detectAndComputer(gray, None) # 计算出图像的关键点和sift特征向量 参数说明:gray表示输入的图片 2.cv2.findHomography(kp ...
- 【Computer Vision】图像单应性变换/投影/仿射/透视
一.基础概念 1. projective transformation = homography = collineation. 2. 齐次坐标:使用N+1维坐标来表示N维坐标,例如在2D笛卡尔坐标 ...
- 单应性(homography)变换的推导
矩阵的一个重要作用是将空间中的点变换到另一个空间中.这个作用在国内的<线性代数>教学中基本没有介绍.要能形像地理解这一作用,比较直观的方法就是图像变换,图像变换的方法很多,单应性变换是其中 ...
- 相机标定 和 单应性矩阵H
求解相机参数的过程就称之为相机标定. 1.相机模型中的四个平面坐标系: 1.1图像像素坐标系(u,v) 以像素为单位,是以图像的左上方为原点的图像坐标系: 1.2图像物理坐标系(也叫像平面坐标系)(x ...
- OpenCV 之 平面单应性
上篇 OpenCV 之 图象几何变换 介绍了等距.相似和仿射变换,本篇侧重投影变换的平面单应性.OpenCV相关函数.应用实例等. 1 投影变换 1.1 平面单应性 投影变换 (Projectiv ...
- OpenCV-Python 特征匹配 + 单应性查找对象 | 四十五
目标 在本章节中,我们将把calib3d模块中的特征匹配和findHomography混合在一起,以在复杂图像中找到已知对象. 基础 那么我们在上一环节上做了什么?我们使用了queryImage,找到 ...
- opencv 仿射变换 投射变换, 单应性矩阵
仿射 estimateRigidTransform():计算多个二维点对或者图像之间的最优仿射变换矩阵 (2行x3列),H可以是部分自由度,比如各向一致的切变. getAffineTransform( ...
- 相机标定:PNP基于单应面解决多点透视问题
利用二维视野内的图像,求出三维图像在场景中的位姿,这是一个三维透视投影的反向求解问题.常用方法是PNP方法,需要已知三维点集的原始模型. 本文做了大量修改,如有不适,请移步原文: ...
随机推荐
- 【leetcode 简单】 第八十四题 两个数组的交集
给定两个数组,编写一个函数来计算它们的交集. 示例 1: 输入: nums1 = [1,2,2,1], nums2 = [2,2] 输出: [2] 示例 2: 输入: nums1 = [4,9,5], ...
- Codeforces Round #540 (Div. 3)题解
题目链接: https://codeforces.com/contest/1118 A题: 题意: q次查询,给你一个n,要你用1和2来凑出n,1的花费为a,2的花费为b,求花费的最小值. 思路: 我 ...
- python变量内存地址释放与加速并行计算多线程
1.导入numba和gc包进行并行计算和内存释放 代码如下很容易的: #coding:utf-8 import time from numba import jit, prange, vectoriz ...
- python实现梯度下降法
# coding:utf-8 import numpy as np import matplotlib.pyplot as plt x = np.arange(-5/2,5/2,0.01) y = - ...
- Macaca(一) - 环境配置
Macaca是阿里提供的一套自动化测试框架,目前已开源. 花了两三个小时研究了一下Macaca的实现原理.因为很好奇它与appium.selenium有啥区别. 实现原理本质上与selenium的we ...
- 关于runOnUiThread()与Handler两种更新UI的方法
在Android开发过程中,常需要更新界面的UI.而更新UI是要主线程来更新的,即UI线程更新.如果在主线线程之外的线程中直接更新页面显示常会报错.抛出异常:android.view.ViewRoot ...
- 【技巧总结】Penetration Test Engineer[2]-Information gathering
2.信息收集 信息收集是属于前期交互阶段所需要了解的问题. 2.1.前期交互内容 签署授权文件:首要要和受测试方签订授权协议. 划定范围:指定了一个二级域名作为测试目标,那么其他二级域名在测试范围内. ...
- python 之datetime库学习
# -*- coding:utf-8 -*- import refrom datetime import datetime, timezone, timedelta def rec_time(): ...
- linux文件管理 -> 系统目录结构
几乎所有的计算机操作系统都是用目录结构组织文件.具体来说就是在一个目录中存放子目录和文件, 而在子目录中又会进一步存放子目录和文件,以此类推形成一个树状的文件结构,由于其结构很像一棵树的分支, 所以该 ...
- 常见四大类型视频接线DP、HDMI、DVI、VGA的比较
如今是新的“视”界,生活中总与各种屏幕打交道,难免会遇到选择视频接线的问题,要想搞清楚这点,我们只要通过了解现今常用的几种视频接线就会有个大致的认识. 281VGA.DVI.HDMI三种视频信号接 ...